

Trail: Learning the Java
Language

http://en.wikipedia.org/wiki/File:Java_logo.svg

 - 2 -

TABLE OF CONTENS

What Is an Object? ... - 6 -

What Is a Class? ... - 6 -

What Is Inheritance? ... - 6 -

What Is an Interface? .. - 6 -

What Is a Package? ... - 7 -

Questions and Exercises: Object-Oriented Programming Concepts - 7 -

Questions .. - 15 -

Exercises ... - 15 -

Variables ... - 16 -

Operators .. - 16 -

Expressions, Statements, and Blocks ... - 16 -

Control Flow Statements .. - 16 -

Naming ... - 18 -

Default Values .. - 20 -

Literals .. - 20 -

Declaring a Variable to Refer to an Array .. - 23 -

Creating, Initializing, and Accessing an Array .. - 24 -

Copying Arrays .. - 26 -

Questions .. - 28 -

Exercises ... - 28 -

Simple Assignment Operator.. - 38 -

Arithmetic Operators .. - 38 -

Unary Operators ... - 38 -

Equality and Relational Operators .. - 38 -

Conditional Operators .. - 38 -

Type Comparison Operator .. - 38 -

Bitwise and Bit Shift Operators .. - 38 -

Questions .. - 39 -

Exercises ... - 39 -

Expressions ... - 41 -

Statements ... - 42 -

Blocks ... - 42 -

Questions .. - 44 -

Exercises ... - 44 -

The if-then Statement ... - 46 -

The if-then-else Statement ... - 46 -

The break Statement .. - 53 -

The continue Statement ... - 54 -

The return Statement.. - 55 -

Questions .. - 58 -

Exercises ... - 58 -

Classes .. - 59 -

Objects .. - 59 -

More on Classes ... - 59 -

Nested Classes .. - 59 -

Enum Types .. - 59 -

Annotations ... - 59 -

Access Modifiers .. - 63 -

 - 3 -

Types .. - 64 -

Variable Names .. - 64 -

Naming a Method ... - 65 -

Overloading Methods ... - 66 -

Parameter Types ... - 69 -

Arbitrary Number of Arguments .. - 70 -

Parameter Names .. - 70 -

Passing Primitive Data Type Arguments ... - 71 -

Passing Reference Data Type Arguments .. - 71 -

Declaring a Variable to Refer to an Object .. - 75 -

Instantiating a Class .. - 76 -

Initializing an Object .. - 76 -

Referencing an Object's Fields ... - 79 -

Calling an Object's Methods ... - 80 -

The Garbage Collector.. - 80 -

Returning a Class or Interface .. - 84 -

Using this with a Field .. - 85 -

Using this with a Constructor ... - 85 -

Class Variables ... - 89 -

Class Methods .. - 90 -

Constants .. - 91 -

The Bicycle Class .. - 91 -

Static Initialization Blocks ... - 93 -

Initializing Instance Members .. - 94 -

Questions .. - 96 -

Exercises ... - 96 -

Questions .. - 97 -

Exercises ... - 97 -

Why Use Nested Classes? .. - 98 -

Static Nested Classes .. - 99 -

Inner Classes ... - 99 -

Local and Anonymous Inner Classes ... - 102 -

Modifiers .. - 102 -

Questions .. - 104 -

Exercises ... - 104 -

Exercises ... - 108 -

Documentation ... - 109 -

Annotations Used by the Compiler .. - 111 -

Annotation Processing .. - 113 -

Questions .. - 114 -

Interfaces .. - 115 -

Inheritance .. - 115 -

Interfaces in Java .. - 116 -

Interfaces as APIs ... - 117 -

Interfaces and Multiple Inheritance .. - 117 -

The Interface Body ... - 119 -

A Sample Interface, Relatable .. - 120 -

Implementing the Relatable Interface... - 120 -

Questions .. - 125 -

Exercises ... - 125 -

 - 4 -

The Java Platform Class Hierarchy .. - 126 -

An Example of Inheritance ... - 127 -

What You Can Do in a Subclass .. - 128 -

Private Members in a Superclass .. - 129 -

Casting Objects ... - 129 -

Instance Methods .. - 131 -

Class Methods .. - 131 -

Modifiers .. - 132 -

Summary ... - 132 -

Accessing Superclass Members.. - 134 -

Subclass Constructors ... - 134 -

The clone() Method .. - 136 -

The equals() Method ... - 137 -

The finalize() Method ... - 138 -

The getClass() Method ... - 138 -

The hashCode() Method ... - 139 -

The toString() Method .. - 139 -

Abstract Classes versus Interfaces .. - 141 -

An Abstract Class Example .. - 141 -

When an Abstract Class Implements an Interface .. - 142 -

Class Members ... - 143 -

Questions .. - 145 -

Exercises ... - 145 -

Numbers ... - 146 -

Strings ... - 146 -

The printf and format Methods ... - 151 -

An Example .. - 152 -

The DecimalFormat Class .. - 154 -

Constants and Basic Methods ... - 156 -

Exponential and Logarithmic Methods .. - 157 -

Trigonometric Methods .. - 158 -

Random Numbers ... - 160 -

Questions .. - 162 -

Exercises ... - 162 -

Escape Sequences ... - 164 -

Creating Strings .. - 166 -

String Length .. - 166 -

Concatenating Strings ... - 167 -

Creating Format Strings ... - 168 -

Converting Strings to Numbers .. - 169 -

Converting Numbers to Strings .. - 170 -

Getting Characters and Substrings by Index .. - 171 -

Other Methods for Manipulating Strings.. - 172 -

Searching for Characters and Substrings in a String .. - 172 -

Replacing Characters and Substrings into a String .. - 173 -

An Example .. - 174 -

Length and Capacity ... - 178 -

StringBuilder Operations .. - 179 -

An Example .. - 180 -

Questions .. - 184 -

 - 5 -

Exercises ... - 184 -

Introduction .. - 185 -

Generic Types ... - 185 -

Generic Methods and Constructors .. - 185 -

Bounded Type Parameters .. - 185 -

Subtyping .. - 185 -

Wildcards .. - 185 -

Type Erasure ... - 185 -

A Simple Box Class .. - 186 -

Type Parameter Naming Conventions .. - 189 -

Questions .. - 200 -

Exercises ... - 200 -

Naming Conventions .. - 206 -

Referring to a Package Member by Its Qualified Name - 207 -

Importing a Package Member... - 207 -

Importing an Entire Package .. - 208 -

Apparent Hierarchies of Packages .. - 208 -

Name Ambiguities .. - 209 -

The Static Import Statement ... - 209 -

Setting the CLASSPATH System Variable ... - 212 -

Questions .. - 215 -

Exercises ... - 215 -

 - 6 -

Lesson: Object-Oriented Programming Concepts.

If you've never used an object-oriented programming language before, you'll need to

learn a few basic concepts before you can begin writing any code. This lesson will

introduce you to objects, classes, inheritance, interfaces, and packages. Each discussion

focuses on how these concepts relate to the real world, while simultaneously providing

an introduction to the syntax of the Java programming language.

What Is an Object?

An object is a software bundle of related state and behavior. Software objects are often

used to model the real-world objects that you find in everyday life. This lesson explains

how state and behavior are represented within an object, introduces the concept of data

encapsulation, and explains the benefits of designing your software in this manner.

What Is a Class?

A class is a blueprint or prototype from which objects are created. This section defines a

class that models the state and behavior of a real-world object. It intentionally focuses

on the basics, showing how even a simple class can cleanly model state and behavior.

What Is Inheritance?

Inheritance provides a powerful and natural mechanism for organizing and structuring

your software. This section explains how classes inherit state and behavior from their

superclasses, and explains how to derive one class from another using the simple syntax

provided by the Java programming language.

What Is an Interface?

An interface is a contract between a class and the outside world. When a class

implements an interface, it promises to provide the behavior published by that interface.

This section defines a simple interface and explains the necessary changes for any class

that implements it.

http://java.sun.com/docs/books/tutorial/java/concepts/object.html
http://java.sun.com/docs/books/tutorial/java/concepts/class.html
http://java.sun.com/docs/books/tutorial/java/concepts/inheritance.html
http://java.sun.com/docs/books/tutorial/java/concepts/interface.html

 - 7 -

What Is a Package?

A package is a namespace for organizing classes and interfaces in a logical manner.

Placing your code into packages makes large software projects easier to manage. This

section explains why this is useful, and introduces you to the Application Programming

Interface (API) provided by the Java platform.

Questions and Exercises: Object-Oriented Programming
Concepts

Use the questions and exercises presented in this section to test your understanding of

objects, classes, inheritance, interfaces, and packages.

http://java.sun.com/docs/books/tutorial/java/concepts/package.html
http://java.sun.com/docs/books/tutorial/java/concepts/QandE/questions.html
http://java.sun.com/docs/books/tutorial/java/concepts/QandE/questions.html

 - 8 -

What Is an Object?

Objects are key to understanding object-oriented technology. Look around right now

and you'll find many examples of real-world objects: your dog, your desk, your

television set, your bicycle.

Real-world objects share two characteristics: They all have state and behavior. Dogs

have state (name, color, breed, hungry) and behavior (barking, fetching, wagging tail).

Bicycles also have state (current gear, current pedal cadence, current speed) and

behavior (changing gear, changing pedal cadence, applying brakes). Identifying the

state and behavior for real-world objects is a great way to begin thinking in terms of

object-oriented programming.

Take a minute right now to observe the real-world objects that are in your immediate

area. For each object that you see, ask yourself two questions: "What possible states can

this object be in?" and "What possible behavior can this object perform?". Make sure to

write down your observations. As you do, you'll notice that real-world objects vary in

complexity; your desktop lamp may have only two possible states (on and off) and two

possible behaviors (turn on, turn off), but your desktop radio might have additional

states (on, off, current volume, current station) and behavior (turn on, turn off, increase

volume, decrease volume, seek, scan, and tune). You may also notice that some objects,

in turn, will also contain other objects. These real-world observations all translate into

the world of object-oriented programming.

A software object.

Software objects are conceptually similar to real-world objects: they too consist of state

and related behavior. An object stores its state in fields (variables in some programming

languages) and exposes its behavior through methods (functions in some programming

languages). Methods operate on an object's internal state and serve as the primary

mechanism for object-to-object communication. Hiding internal state and requiring all

interaction to be performed through an object's methods is known as data encapsulation

— a fundamental principle of object-oriented programming.

Consider a bicycle, for example:

 - 9 -

A bicycle modeled as a software object.

By attributing state (current speed, current pedal cadence, and current gear) and

providing methods for changing that state, the object remains in control of how the

outside world is allowed to use it. For example, if the bicycle only has 6 gears, a method

to change gears could reject any value that is less than 1 or greater than 6.

Bundling code into individual software objects provides a number of benefits,

including:

1. Modularity: The source code for an object can be written and maintained

independently of the source code for other objects. Once created, an object can

be easily passed around inside the system.

2. Information-hiding: By interacting only with an object's methods, the details of

its internal implementation remain hidden from the outside world.

3. Code re-use: If an object already exists (perhaps written by another software

developer), you can use that object in your program. This allows specialists to

implement/test/debug complex, task-specific objects, which you can then trust to

run in your own code.

Pluggability and debugging ease: If a particular object turns out to be problematic, you

can simply remove it from your application and plug in a different object as its

replacement. This is analogous to fixing mechanical problems in the real world. If a bolt

breaks, you replace it, not the entire machine.

 - 10 -

What Is a Class?

In the real world, you'll often find many individual objects all of the same kind. There

may be thousands of other bicycles in existence, all of the same make and model. Each

bicycle was built from the same set of blueprints and therefore contains the same

components. In object-oriented terms, we say that your bicycle is an instance of the

class of objects known as bicycles. A class is the blueprint from which individual

objects are created.

The following Bicycle class is one possible implementation of a bicycle:

class Bicycle {

 int cadence = 0;

 int speed = 0;

 int gear = 1;

 void changeCadence(int newValue) {

 cadence = newValue;

 }

 void changeGear(int newValue) {

 gear = newValue;

 }

 void speedUp(int increment) {

 speed = speed + increment;

 }

 void applyBrakes(int decrement) {

 speed = speed - decrement;

 }

 void printStates() {

 System.out.println("cadence:"+cadence+" speed:"+speed+"

gear:"+gear);

 }

}

The syntax of the Java programming language will look new to you, but the design of

this class is based on the previous discussion of bicycle objects. The fields cadence,

speed, and gear represent the object's state, and the methods (changeCadence,

changeGear, speedUp etc.) define its interaction with the outside world.

You may have noticed that the Bicycle class does not contain a main method. That's

because it's not a complete application; it's just the blueprint for bicycles that might be

used in an application. The responsibility of creating and using new Bicycle objects

belongs to some other class in your application.

Here's a BicycleDemo class that creates two separate Bicycle objects and invokes their

methods:

class BicycleDemo {

 public static void main(String[] args) {

http://java.sun.com/docs/books/tutorial/java/concepts/examples/Bicycle.java
http://java.sun.com/docs/books/tutorial/java/concepts/examples/BicycleDemo.java

 - 11 -

 // Create two different Bicycle objects

 Bicycle bike1 = new Bicycle();

 Bicycle bike2 = new Bicycle();

 // Invoke methods on those objects

 bike1.changeCadence(50);

 bike1.speedUp(10);

 bike1.changeGear(2);

 bike1.printStates();

 bike2.changeCadence(50);

 bike2.speedUp(10);

 bike2.changeGear(2);

 bike2.changeCadence(40);

 bike2.speedUp(10);

 bike2.changeGear(3);

 bike2.printStates();

 }

}

The output of this test prints the ending pedal cadence, speed, and gear for the two

bicycles:
cadence:50 speed:10 gear:2

cadence:40 speed:20 gear:3

 - 12 -

What Is Inheritance?

Different kinds of objects often have a certain amount in common with each other.

Mountain bikes, road bikes, and tandem bikes, for example, all share the characteristics

of bicycles (current speed, current pedal cadence, current gear). Yet each also defines

additional features that make them different: tandem bicycles have two seats and two

sets of handlebars; road bikes have drop handlebars; some mountain bikes have an

additional chain ring, giving them a lower gear ratio.

Object-oriented programming allows classes to inherit commonly used state and

behavior from other classes. In this example, Bicycle now becomes the superclass of

MountainBike, RoadBike, and TandemBike. In the Java programming language, each

class is allowed to have one direct superclass, and each superclass has the potential for

an unlimited number of subclasses:

A hierarchy of bicycle classes.

The syntax for creating a subclass is simple. At the beginning of your class declaration,

use the extends keyword, followed by the name of the class to inherit from:

class MountainBike extends Bicycle {

 // new fields and methods defining a mountain bike would go here

}

This gives MountainBike all the same fields and methods as Bicycle, yet allows its

code to focus exclusively on the features that make it unique. This makes code for your

subclasses easy to read. However, you must take care to properly document the state

and behavior that each superclass defines, since that code will not appear in the source

file of each subclass.

 - 13 -

What Is an Interface?

As you've already learned, objects define their interaction with the outside world

through the methods that they expose. Methods form the object's interface with the

outside world; the buttons on the front of your television set, for example, are the

interface between you and the electrical wiring on the other side of its plastic casing.

You press the "power" button to turn the television on and off.

In its most common form, an interface is a group of related methods with empty bodies.

A bicycle's behavior, if specified as an interface, might appear as follows:

interface Bicycle {

 void changeCadence(int newValue);

 void changeGear(int newValue);

 void speedUp(int increment);

 void applyBrakes(int decrement);

}

To implement this interface, the name of your class would change (to ACMEBicycle, for

example), and you'd use the implements keyword in the class declaration:
class ACMEBicycle implements Bicycle {

 // remainder of this class implemented as before

}

Implementing an interface allows a class to become more formal about the behavior it

promises to provide. Interfaces form a contract between the class and the outside world,

and this contract is enforced at build time by the compiler. If your class claims to

implement an interface, all methods defined by that interface must appear in its source

code before the class will successfully compile.

Note: To actually compile the ACMEBicycle class, you'll need to add the public

keyword to the beginning of the implemented interface methods. You'll learn the

reasons for this later in the lessons on Classes and Objects and Interfaces and

Inheritance.

http://java.sun.com/docs/books/tutorial/java/javaOO/index.html
http://java.sun.com/docs/books/tutorial/java/IandI/index.html
http://java.sun.com/docs/books/tutorial/java/IandI/index.html

 - 14 -

What Is a Package?

A package is a namespace that organizes a set of related classes and interfaces.

Conceptually you can think of packages as being similar to different folders on your

computer. You might keep HTML pages in one folder, images in another, and scripts or

applications in yet another. Because software written in the Java programming language

can be composed of hundreds or thousands of individual classes, it makes sense to keep

things organized by placing related classes and interfaces into packages.

The Java platform provides an enormous class library (a set of packages) suitable for

use in your own applications. This library is known as the "Application Programming

Interface", or "API" for short. Its packages represent the tasks most commonly

associated with general-purpose programming. For example, a String object contains

state and behavior for character strings; a File object allows a programmer to easily

create, delete, inspect, compare, or modify a file on the filesystem; a Socket object

allows for the creation and use of network sockets; various GUI objects control buttons

and checkboxes and anything else related to graphical user interfaces. There are literally

thousands of classes to choose from. This allows you, the programmer, to focus on the

design of your particular application, rather than the infrastructure required to make it

work.

The Java Platform API Specification contains the complete listing for all packages,

interfaces, classes, fields, and methods supplied by the Java Platform 6, Standard

Edition. Load the page in your browser and bookmark it. As a programmer, it will

become your single most important piece of reference documentation.

http://java.sun.com/javase/6/docs/api/index.html

 - 15 -

Questions and Exercises: Object-Oriented Programming
Concepts

Questions

1. Real-world objects contain ___ and ___.

2. A software object's state is stored in ___.

3. A software object's behavior is exposed through ___.

4. Hiding internal data from the outside world, and accessing it only through

publicly exposed methods is known as data ___.

5. A blueprint for a software object is called a ___.

6. Common behavior can be defined in a ___ and inherited into a ___ using the ___

keyword.

7. A collection of methods with no implementation is called an ___.

8. A namespace that organizes classes and interfaces by functionality is called a

___.

9. The term API stands for ___?

Exercises

1. Create new classes for each real-world object that you observed at the beginning

of this trail. Refer to the Bicycle class if you forget the required syntax.

2. For each new class that you've created above, create an interface that defines its

behavior, then require your class to implement it. Omit one or two methods and

try compiling. What does the error look like?

 - 16 -

Lesson: Language Basics

Variables

You've already learned that objects store their state in fields. However, the Java

programming language also uses the term "variable" as well. This section discusses this

relationship, plus variable naming rules and conventions, basic data types (primitive

types, character strings, and arrays), default values, and literals.

Operators

This section describes the operators of the Java programming language. It presents the

most commonly-used operators first, and the less commonly-used operators last. Each

discussion includes code samples that you can compile and run.

Expressions, Statements, and Blocks

Operators may be used in building expressions, which compute values; expressions are

the core components of statements; statements may be grouped into blocks. This section

discusses expressions, statements, and blocks using example code that you've already

seen.

Control Flow Statements

This section describes the control flow statements supported by the Java programming

language. It covers the decisions-making, looping, and branching statements that enable

your programs to conditionally execute particular blocks of code.

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/variables.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/operators.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/expressions.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/flow.html

 - 17 -

Variables

As you learned in the previous lesson, an object stores its state in fields.
int cadence = 0;

int speed = 0;

int gear = 1;

The What Is an Object? discussion introduced you to fields, but you probably have still

a few questions, such as: What are the rules and conventions for naming a field?

Besides int, what other data types are there? Do fields have to be initialized when they

are declared? Are fields assigned a default value if they are not explicitly initialized?

We'll explore the answers to such questions in this lesson, but before we do, there are a

few technical distinctions you must first become aware of. In the Java programming

language, the terms "field" and "variable" are both used; this is a common source of

confusion among new developers, since both often seem to refer to the same thing.

The Java programming language defines the following kinds of variables:

 Instance Variables (Non-Static Fields) Technically speaking, objects store

their individual states in "non-static fields", that is, fields declared without the

static keyword. Non-static fields are also known as instance variables because

their values are unique to each instance of a class (to each object, in other

words); the currentSpeed of one bicycle is independent from the

currentSpeed of another.

 Class Variables (Static Fields) A class variable is any field declared with the

static modifier; this tells the compiler that there is exactly one copy of this

variable in existence, regardless of how many times the class has been

instantiated. A field defining the number of gears for a particular kind of bicycle

could be marked as static since conceptually the same number of gears will

apply to all instances. The code static int numGears = 6; would create such

a static field. Additionally, the keyword final could be added to indicate that

the number of gears will never change.

 Local Variables Similar to how an object stores its state in fields, a method will

often store its temporary state in local variables. The syntax for declaring a local

variable is similar to declaring a field (for example, int count = 0;). There is

no special keyword designating a variable as local; that determination comes

entirely from the location in which the variable is declared — which is between

the opening and closing braces of a method. As such, local variables are only

visible to the methods in which they are declared; they are not accessible from

the rest of the class.

 Parameters You've already seen examples of parameters, both in the Bicycle

class and in the main method of the "Hello World!" application. Recall that the

signature for the main method is public static void main(String[]

args). Here, the args variable is the parameter to this method. The important

thing to remember is that parameters are always classified as "variables" not

"fields". This applies to other parameter-accepting constructs as well (such as

constructors and exception handlers) that you'll learn about later in the tutorial.

Having said that, the remainder of this tutorial uses the following general guidelines

when discussing fields and variables. If we are talking about "fields in general"

http://java.sun.com/docs/books/tutorial/java/concepts/object.html

 - 18 -

(excluding local variables and parameters), we may simply say "fields". If the

discussion applies to "all of the above", we may simply say "variables". If the context

calls for a distinction, we will use specific terms (static field, local variables, etc.) as

appropriate. You may also occasionally see the term "member" used as well. A type's

fields, methods, and nested types are collectively called its members.

Naming

Every programming language has its own set of rules and conventions for the kinds of

names that you're allowed to use, and the Java programming language is no different.

The rules and conventions for naming your variables can be summarized as follows:

 Variable names are case-sensitive. A variable's name can be any legal identifier

— an unlimited-length sequence of Unicode letters and digits, beginning with a

letter, the dollar sign "$", or the underscore character "_". The convention,

however, is to always begin your variable names with a letter, not "$" or "_".

Additionally, the dollar sign character, by convention, is never used at all. You

may find some situations where auto-generated names will contain the dollar

sign, but your variable names should always avoid using it. A similar convention

exists for the underscore character; while it's technically legal to begin your

variable's name with "_", this practice is discouraged. White space is not

permitted.

 Subsequent characters may be letters, digits, dollar signs, or underscore

characters. Conventions (and common sense) apply to this rule as well. When

choosing a name for your variables, use full words instead of cryptic

abbreviations. Doing so will make your code easier to read and understand. In

many cases it will also make your code self-documenting; fields named

cadence, speed, and gear, for example, are much more intuitive than

abbreviated versions, such as s, c, and g. Also keep in mind that the name you

choose must not be a keyword or reserved word.

 If the name you choose consists of only one word, spell that word in all

lowercase letters. If it consists of more than one word, capitalize the first letter

of each subsequent word. The names gearRatio and currentGear are prime

examples of this convention. If your variable stores a constant value, such as

static final int NUM_GEARS = 6, the convention changes slightly,

capitalizing every letter and separating subsequent words with the underscore

character. By convention, the underscore character is never used elsewhere.

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html

 - 19 -

Primitive Data Types

The Java programming language is strongly-typed, which means that all variables must

first be declared before they can be used. This involves stating the variable's type and

name, as you've already seen:
int gear = 1;

Doing so tells your program that a field named "gear" exists, holds numerical data, and

has an initial value of "1". A variable's data type determines the values it may contain,

plus the operations that may be performed on it. In addition to int, the Java

programming language supports seven other primitive data types. A primitive type is

predefined by the language and is named by a reserved keyword. Primitive values do

not share state with other primitive values. The eight primitive data types supported by

the Java programming language are:

 byte: The byte data type is an 8-bit signed two's complement integer. It has a

minimum value of -128 and a maximum value of 127 (inclusive). The byte data

type can be useful for saving memory in large arrays, where the memory savings

actually matters. They can also be used in place of int where their limits help to

clarify your code; the fact that a variable's range is limited can serve as a form of

documentation.

 short: The short data type is a 16-bit signed two's complement integer. It has a

minimum value of -32,768 and a maximum value of 32,767 (inclusive). As with

byte, the same guidelines apply: you can use a short to save memory in large

arrays, in situations where the memory savings actually matters.

 int: The int data type is a 32-bit signed two's complement integer. It has a

minimum value of -2,147,483,648 and a maximum value of 2,147,483,647

(inclusive). For integral values, this data type is generally the default choice

unless there is a reason (like the above) to choose something else. This data type

will most likely be large enough for the numbers your program will use, but if

you need a wider range of values, use long instead.

 long: The long data type is a 64-bit signed two's complement integer. It has a

minimum value of -9,223,372,036,854,775,808 and a maximum value of

9,223,372,036,854,775,807 (inclusive). Use this data type when you need a

range of values wider than those provided by int.

 float: The float data type is a single-precision 32-bit IEEE 754 floating point.

Its range of values is beyond the scope of this discussion, but is specified in

section 4.2.3 of the Java Language Specification. As with the recommendations

for byte and short, use a float (instead of double) if you need to save

memory in large arrays of floating point numbers. This data type should never

be used for precise values, such as currency. For that, you will need to use the

java.math.BigDecimal class instead. Numbers and Strings covers BigDecimal

and other useful classes provided by the Java platform.

 double: The double data type is a double-precision 64-bit IEEE 754 floating

point. Its range of values is beyond the scope of this discussion, but is specified

in section 4.2.3 of the Java Language Specification. For decimal values, this data

type is generally the default choice. As mentioned above, this data type should

never be used for precise values, such as currency.

 boolean: The boolean data type has only two possible values: true and false.

Use this data type for simple flags that track true/false conditions. This data type

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/arrays.html
http://java.sun.com/docs/books/jls/third_edition/html/typesValues.html#4.2.3
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html
http://java.sun.com/docs/books/tutorial/java/data/index.html
http://java.sun.com/docs/books/jls/third_edition/html/typesValues.html#4.2.3

 - 20 -

represents one bit of information, but its "size" isn't something that's precisely

defined.

 char: The char data type is a single 16-bit Unicode character. It has a minimum

value of '\u0000' (or 0) and a maximum value of '\uffff' (or 65,535

inclusive).

In addition to the eight primitive data types listed above, the Java programming

language also provides special support for character strings via the java.lang.String

class. Enclosing your character string within double quotes will automatically create a

new String object; for example, String s = "this is a string";. String objects

are immutable, which means that once created, their values cannot be changed. The

String class is not technically a primitive data type, but considering the special support

given to it by the language, you'll probably tend to think of it as such. You'll learn more

about the String class in Simple Data Objects

Default Values

It's not always necessary to assign a value when a field is declared. Fields that are

declared but not initialized will be set to a reasonable default by the compiler. Generally

speaking, this default will be zero or null, depending on the data type. Relying on such

default values, however, is generally considered bad programming style.

The following chart summarizes the default values for the above data types.

Data Type Default Value (for fields)

byte 0

short 0

int 0

long 0L

float 0.0f

double 0.0d

char '\u0000'

String (or any object) null

boolean false

Local variables are slightly different; the compiler never assigns a default value to an

uninitialized local variable. If you cannot initialize your local variable where it is

declared, make sure to assign it a value before you attempt to use it. Accessing an

uninitialized local variable will result in a compile-time error.

Literals

You may have noticed that the new keyword isn't used when initializing a variable of a

primitive type. Primitive types are special data types built into the language; they are

not objects created from a class. A literal is the source code representation of a fixed

http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/docs/books/tutorial/java/data/index.html

 - 21 -

value; literals are represented directly in your code without requiring computation. As

shown below, it's possible to assign a literal to a variable of a primitive type:

 boolean result = true;

 char capitalC = 'C';

 byte b = 100;

 short s = 10000;

 int i = 100000;

The integral types (byte, short, int, and long) can be expressed using decimal, octal,

or hexadecimal number systems. Decimal is the number system you already use every

day; it's based on 10 digits, numbered 0 through 9. The octal number system is base 8,

consisting of the digits 0 through 7. The hexadecimal system is base 16, whose digits

are the numbers 0 through 9 and the letters A through F. For general-purpose

programming, the decimal system is likely to be the only number system you'll ever use.

However, if you need octal or hexadecimal, the following example shows the correct

syntax. The prefix 0 indicates octal, whereas 0x indicates hexadecimal.

 int decVal = 26; // The number 26, in decimal

 int octVal = 032; // The number 26, in octal

 int hexVal = 0x1a; // The number 26, in hexadecimal

The floating point types (float and double) can also be expressed using E or e (for

scientific notation), F or f (32-bit float literal) and D or d (64-bit double literal; this is

the default and by convention is omitted).

 double d1 = 123.4;

 double d2 = 1.234e2; // same value as d1, but in scientific

notation

 float f1 = 123.4f;

Literals of types char and String may contain any Unicode (UTF-16) characters. If

your editor and file system allow it, you can use such characters directly in your code. If

not, you can use a "Unicode escape" such as '\u0108' (capital C with circumflex), or

"S\u00ED se\u00F1or" (Sí Señor in Spanish). Always use 'single quotes' for char

literals and "double quotes" for String literals. Unicode escape sequences may be used

elsewhere in a program (such as in field names, for example), not just in char or

String literals.

The Java programming language also supports a few special escape sequences for char

and String literals: \b (backspace), \t (tab), \n (line feed), \f (form feed), \r (carriage

return), \" (double quote), \' (single quote), and \\ (backslash).

There's also a special null literal that can be used as a value for any reference type.

null may be assigned to any variable, except variables of primitive types. There's little

you can do with a null value beyond testing for its presence. Therefore, null is often

used in programs as a marker to indicate that some object is unavailable.

Finally, there's also a special kind of literal called a class literal, formed by taking a

type name and appending ".class"; for example, String.class. This refers to the

object (of type Class) that represents the type itself.

 - 22 -

Arrays

An array is a container object that holds a fixed number of values of a single type. The

length of an array is established when the array is created. After creation, its length is

fixed. You've seen an example of arrays already, in the main method of the "Hello

World!" application. This section discusses arrays in greater detail.

An array of ten elements

Each item in an array is called an element, and each element is accessed by its

numerical index. As shown in the above illustration, numbering begins with 0. The 9th

element, for example, would therefore be accessed at index 8.

The following program, ArrayDemo, creates an array of integers, puts some values in it,

and prints each value to standard output.

class ArrayDemo {

 public static void main(String[] args) {

 int[] anArray; // declares an array of integers

 anArray = new int[10]; // allocates memory for 10

integers

 anArray[0] = 100; // initialize first element

 anArray[1] = 200; // initialize second element

 anArray[2] = 300; // etc.

 anArray[3] = 400;

 anArray[4] = 500;

 anArray[5] = 600;

 anArray[6] = 700;

 anArray[7] = 800;

 anArray[8] = 900;

 anArray[9] = 1000;

 System.out.println("Element at index 0: " + anArray[0]);

 System.out.println("Element at index 1: " + anArray[1]);

 System.out.println("Element at index 2: " + anArray[2]);

 System.out.println("Element at index 3: " + anArray[3]);

 System.out.println("Element at index 4: " + anArray[4]);

 System.out.println("Element at index 5: " + anArray[5]);

 System.out.println("Element at index 6: " + anArray[6]);

 System.out.println("Element at index 7: " + anArray[7]);

 System.out.println("Element at index 8: " + anArray[8]);

 System.out.println("Element at index 9: " + anArray[9]);

 }

}

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/ArrayDemo.java

 - 23 -

The output from this program is:
Element at index 0: 100

Element at index 1: 200

Element at index 2: 300

Element at index 3: 400

Element at index 4: 500

Element at index 5: 600

Element at index 6: 700

Element at index 7: 800

Element at index 8: 900

Element at index 9: 1000

In a real-world programming situation, you'd probably use one of the supported looping

constructs to iterate through each element of the array, rather than write each line

individually as shown above. However, this example clearly illustrates the array syntax.

You'll learn about the various looping constructs (for, while, and do-while) in the

Control Flow section.

Declaring a Variable to Refer to an Array

The above program declares anArray with the following line of code:
int[] anArray; // declares an array of integers

Like declarations for variables of other types, an array declaration has two components:

the array's type and the array's name. An array's type is written as type[], where type

is the data type of the contained elements; the square brackets are special symbols

indicating that this variable holds an array. The size of the array is not part of its type

(which is why the brackets are empty). An array's name can be anything you want,

provided that it follows the rules and conventions as previously discussed in the naming

section. As with variables of other types, the declaration does not actually create an

array — it simply tells the compiler that this variable will hold an array of the specified

type.

Similarly, you can declare arrays of other types:

byte[] anArrayOfBytes;

short[] anArrayOfShorts;

long[] anArrayOfLongs;

float[] anArrayOfFloats;

double[] anArrayOfDoubles;

boolean[] anArrayOfBooleans;

char[] anArrayOfChars;

String[] anArrayOfStrings;

You can also place the square brackets after the array's name:

float anArrayOfFloats[]; // this form is discouraged

However, convention discourages this form; the brackets identify the array type and

should appear with the type designation.

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/flow.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/variables.html#naming

 - 24 -

Creating, Initializing, and Accessing an Array

One way to create an array is with the new operator. The next statement in the

ArrayDemo program allocates an array with enough memory for ten integer elements

and assigns the array to the anArray variable.

anArray = new int[10]; // create an array of integers

If this statement were missing, the compiler would print an error like the following, and

compilation would fail:

ArrayDemo.java:4: Variable anArray may not have been initialized.

The next few lines assign values to each element of the array:

anArray[0] = 100; // initialize first element

anArray[1] = 200; // initialize second element

anArray[2] = 300; // etc.

Each array element is accessed by its numerical index:

System.out.println("Element 1 at index 0: " + anArray[0]);

System.out.println("Element 2 at index 1: " + anArray[1]);

System.out.println("Element 3 at index 2: " + anArray[2]);

Alternatively, you can use the shortcut syntax to create and initialize an array:
int[] anArray = {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000};

Here the length of the array is determined by the number of values provided between {

and }.

You can also declare an array of arrays (also known as a multidimensional array) by

using two or more sets of square brackets, such as String[][] names. Each element,

therefore, must be accessed by a corresponding number of index values.

In the Java programming language, a multidimensional array is simply an array whose

components are themselves arrays. This is unlike arrays in C or Fortran. A consequence

of this is that the rows are allowed to vary in length, as shown in the following

MultiDimArrayDemo program:

class MultiDimArrayDemo {

 public static void main(String[] args) {

 String[][] names = {{"Mr. ", "Mrs. ", "Ms. "},

 {"Smith", "Jones"}};

 System.out.println(names[0][0] + names[1][0]); //Mr. Smith

 System.out.println(names[0][2] + names[1][1]); //Ms. Jones

 }

}

The output from this program is:
 Mr. Smith

 Ms. Jones

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/MultiDimArrayDemo.java

 - 25 -

Finally, you can use the built-in length property to determine the size of any array. The

code

 System.out.println(anArray.length);

will print the array's size to standard output.

 - 26 -

Copying Arrays

The System class has an arraycopy method that you can use to efficiently copy data

from one array into another:

public static void arraycopy(Object src,

 int srcPos,

 Object dest,

 int destPos,

 int length)

The two Object arguments specify the array to copy from and the array to copy to. The

three int arguments specify the starting position in the source array, the starting

position in the destination array, and the number of array elements to copy.

The following program, ArrayCopyDemo, declares an array of char elements, spelling

the word "decaffeinated". It uses arraycopy to copy a subsequence of array

components into a second array:

class ArrayCopyDemo {

 public static void main(String[] args) {

 char[] copyFrom = { 'd', 'e', 'c', 'a', 'f', 'f', 'e',

 'i', 'n', 'a', 't', 'e', 'd' };

 char[] copyTo = new char[7];

 System.arraycopy(copyFrom, 2, copyTo, 0, 7);

 System.out.println(new String(copyTo));

 }

}

The output from this program is:

caffein

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/ArrayCopyDemo.java

 - 27 -

Summary of Variables

The Java programming language uses both "fields" and "variables" as part of its

terminology. Instance variables (non-static fields) are unique to each instance of a class.

Class variables (static fields) are fields declared with the static modifier; there is

exactly one copy of a class variable, regardless of how many times the class has been

instantiated. Local variables store temporary state inside a method. Parameters are

variables that provide extra information to a method; both local variables and

parameters are always classified as "variables" (not "fields"). When naming your fields

or variables, there are rules and conventions that you should (or must) follow.

The eight primitive data types are: byte, short, int, long, float, double, boolean, and

char. The java.lang.String class represents character strings. The compiler will

assign a reasonable default value for fields of the above types; for local variables, a

default value is never assigned. A literal is the source code representation of a fixed

value. An array is a container object that holds a fixed number of values of a single

type. The length of an array is established when the array is created. After creation, its

length is fixed.

http://java.sun.com/javase/6/docs/api/java/lang/String.html

 - 28 -

Questions and Exercises: Variables

Questions

1. The term "instance variable" is another name for ___.

2. The term "class variable" is another name for ___.

3. A local variable stores temporary state; it is declared inside a ___.

4. A variable declared within the opening and closing parenthesis of a method

signature is called a ____.

5. What are the eight primitive data types supported by the Java programming

language?

6. Character strings are represented by the class ___.

7. An ___ is a container object that holds a fixed number of values of a single type.

Exercises

1. Create a small program that defines some fields. Try creating some illegal field

names and see what kind of error the compiler produces. Use the naming rules

and conventions as a guide.

2. In the program you created in Exercise 1, try leaving the fields uninitialized and

print out their values. Try the same with a local variable and see what kind of

compiler errors you can produce. Becoming familiar with common compiler

errors will make it easier to recognize bugs in your code.

 - 29 -

Operators

Now that you've learned how to declare and initialize variables, you probably want to

know how to do something with them. Learning the operators of the Java programming

language is a good place to start. Operators are special symbols that perform specific

operations on one, two, or three operands, and then return a result.

As we explore the operators of the Java programming language, it may be helpful for

you to know ahead of time which operators have the highest precedence. The operators

in the following table are listed according to precedence order. The closer to the top of

the table an operator appears, the higher its precedence. Operators with higher

precedence are evaluated before operators with relatively lower precedence. Operators

on the same line have equal precedence. When operators of equal precedence appear in

the same expression, a rule must govern which is evaluated first. All binary operators

except for the assignment operators are evaluated from left to right; assignment

operators are evaluated right to left.

Operator Precedence

Operators Precedence

postfix expr++ expr--

unary ++expr --expr +expr -expr ~ !

multiplicative * / %

additive + -

shift << >> >>>

relational < > <= >= instanceof

equality == !=

bitwise AND &

bitwise exclusive OR ^

bitwise inclusive OR |

logical AND &&

logical OR ||

ternary ? :

assignment = += -= *= /= %= &= ^= |= <<= >>= >>>=

In general-purpose programming, certain operators tend to appear more frequently than

others; for example, the assignment operator "=" is far more common than the unsigned

right shift operator ">>>". With that in mind, the following discussion focuses first on

the operators that you're most likely to use on a regular basis, and ends focusing on

 - 30 -

those that are less common. Each discussion is accompanied by sample code that you

can compile and run. Studying its output will help reinforce what you've just learned.

 - 31 -

Assignment, Arithmetic, and Unary Operators

The Simple Assignment Operator

One of the most common operators that you'll encounter is the simple assignment

operator "=". You saw this operator in the Bicycle class; it assigns the value on its right

to the operand on its left:

 int cadence = 0;

 int speed = 0;

 int gear = 1;

This operator can also be used on objects to assign object references, as discussed in

Creating Objects.

The Arithmetic Operators

The Java programming language provides operators that perform addition, subtraction,

multiplication, and division. There's a good chance you'll recognize them by their

counterparts in basic mathematics. The only symbol that might look new to you is "%",

which divides one operand by another and returns the remainder as its result.

+ additive operator (also used for String concatenation)

- subtraction operator

* multiplication operator

/ division operator

% remainder operator

The following program, ArithmeticDemo, tests the arithmetic operators.

class ArithmeticDemo {

 public static void main (String[] args){

 int result = 1 + 2; // result is now 3

 System.out.println(result);

 result = result - 1; // result is now 2

 System.out.println(result);

 result = result * 2; // result is now 4

 System.out.println(result);

 result = result / 2; // result is now 2

 System.out.println(result);

 result = result + 8; // result is now 10

 result = result % 7; // result is now 3

 System.out.println(result);

 }

}

You can also combine the arithmetic operators with the simple assignment operator to

create compound assignments. For example, x+=1; and x=x+1; both increment the

value of x by 1.

http://java.sun.com/docs/books/tutorial/java/javaOO/objectcreation.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/ArithmeticDemo.java

 - 32 -

The + operator can also be used for concatenating (joining) two strings together, as

shown in the following ConcatDemo program:

class ConcatDemo {

 public static void main(String[] args){

 String firstString = "This is";

 String secondString = " a concatenated string.";

 String thirdString = firstString+secondString;

 System.out.println(thirdString);

 }

}

By the end of this program, the variable thirdString contains "This is a concatenated

string.", which gets printed to standard output.

The Unary Operators

The unary operators require only one operand; they perform various operations such as

incrementing/decrementing a value by one, negating an expression, or inverting the

value of a boolean.

+ Unary plus operator; indicates positive value (numbers are

positive without this, however)

- Unary minus operator; negates an expression

++ Increment operator; increments a value by 1

-- Decrement operator; decrements a value by 1

! Logical complement operator; inverts the value of a boolean

The following program, UnaryDemo, tests the unary operators:

class UnaryDemo {

 public static void main(String[] args){

 int result = +1; // result is now 1

 System.out.println(result);

 result--; // result is now 0

 System.out.println(result);

 result++; // result is now 1

 System.out.println(result);

 result = -result; // result is now -1

 System.out.println(result);

 boolean success = false;

 System.out.println(success); // false

 System.out.println(!success); // true

 }

}

The increment/decrement operators can be applied before (prefix) or after (postfix) the

operand. The code result++; and ++result; will both end in result being

incremented by one. The only difference is that the prefix version (++result) evaluates

to the incremented value, whereas the postfix version (result++) evaluates to the

original value. If you are just performing a simple increment/decrement, it doesn't really

matter which version you choose. But if you use this operator in part of a larger

expression, the one that you choose may make a significant difference.

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/ConcatDemo.java
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/UnaryDemo.java

 - 33 -

The following program, PrePostDemo, illustrates the prefix/postfix unary increment

operator:

class PrePostDemo {

 public static void main(String[] args){

 int i = 3;

 i++;

 System.out.println(i); // "4"

 ++i;

 System.out.println(i); // "5"

 System.out.println(++i); // "6"

 System.out.println(i++); // "6"

 System.out.println(i); // "7"

 }

}

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/PrePostDemo.java

 - 34 -

Equality, Relational, and Conditional Operators

The Equality and Relational Operators

The equality and relational operators determine if one operand is greater than, less than,

equal to, or not equal to another operand. The majority of these operators will probably

look familiar to you as well. Keep in mind that you must use "==", not "=", when testing

if two primitive values are equal.

== equal to

!= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

The following program, ComparisonDemo, tests the comparison operators:

class ComparisonDemo {

 public static void main(String[] args){

 int value1 = 1;

 int value2 = 2;

 if(value1 == value2) System.out.println("value1 == value2");

 if(value1 != value2) System.out.println("value1 != value2");

 if(value1 > value2) System.out.println("value1 > value2");

 if(value1 < value2) System.out.println("value1 < value2");

 if(value1 <= value2) System.out.println("value1 <= value2");

 }

}

Output:
value1 != value2

value1 < value2

value1 <= value2

The Conditional Operators

The && and || operators perform Conditional-AND and Conditional-OR operations on

two boolean expressions. These operators exhibit "short-circuiting" behavior, which

means that the second operand is evaluated only if needed.

&& Conditional-AND

|| Conditional-OR

The following program, ConditionalDemo1, tests these operators:

class ConditionalDemo1 {

 public static void main(String[] args){

 int value1 = 1;

 int value2 = 2;

 if((value1 == 1) && (value2 == 2))

System.out.println("value1 is 1 AND value2 is 2");

 if((value1 == 1) || (value2 == 1))

System.out.println("value1 is 1 OR value2 is 1");

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/ComparisonDemo.java
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/ConditionalDemo1.java

 - 35 -

 }

}

Another conditional operator is ?:, which can be thought of as shorthand for an if-

then-else statement (discussed in the Control Flow Statements section of this lesson).

This operator is also known as the ternary operator because it uses three operands. In

the following example, this operator should be read as: "If someCondition is true,

assign the value of value1 to result. Otherwise, assign the value of value2 to

result."

The following program, ConditionalDemo2, tests the ?: operator:

class ConditionalDemo2 {

 public static void main(String[] args){

 int value1 = 1;

 int value2 = 2;

 int result;

 boolean someCondition = true;

 result = someCondition ? value1 : value2;

 System.out.println(result);

 }

}

Because someCondition is true, this program prints "1" to the screen. Use the ?:

operator instead of an if-then-else statement if it makes your code more readable; for

example, when the expressions are compact and without side-effects (such as

assignments).

The Type Comparison Operator instanceof

The instanceof operator compares an object to a specified type. You can use it to test

if an object is an instance of a class, an instance of a subclass, or an instance of a class

that implements a particular interface.

The following program, InstanceofDemo, defines a parent class (named Parent), a

simple interface (named MyInterface), and a child class (named Child) that inherits

from the parent and implements the interface.

class InstanceofDemo {

 public static void main(String[] args) {

 Parent obj1 = new Parent();

 Parent obj2 = new Child();

 System.out.println("obj1 instanceof Parent: " + (obj1 instanceof

Parent));

 System.out.println("obj1 instanceof Child: " + (obj1 instanceof

Child));

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/flow.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/ConditionalDemo2.java
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/InstanceofDemo.java

 - 36 -

 System.out.println("obj1 instanceof MyInterface: " + (obj1

instanceof MyInterface));

 System.out.println("obj2 instanceof Parent: " + (obj2 instanceof

Parent));

 System.out.println("obj2 instanceof Child: " + (obj2 instanceof

Child));

 System.out.println("obj2 instanceof MyInterface: " + (obj2

instanceof MyInterface));

 }

}

class Parent{}

class Child extends Parent implements MyInterface{}

interface MyInterface{}

Output:
obj1 instanceof Parent: true

obj1 instanceof Child: false

obj1 instanceof MyInterface: false

obj2 instanceof Parent: true

obj2 instanceof Child: true

obj2 instanceof MyInterface: true

When using the instanceof operator, keep in mind that null is not an instance of

anything.

 - 37 -

Bitwise and Bit Shift Operators

The Java programming language also provides operators that perform bitwise and bit

shift operations on integral types. The operators discussed in this section are less

commonly used. Therefore, their coverage is brief; the intent is to simply make you

aware that these operators exist.

The unary bitwise complement operator "~" inverts a bit pattern; it can be applied to any

of the integral types, making every "0" a "1" and every "1" a "0". For example, a byte

contains 8 bits; applying this operator to a value whose bit pattern is "00000000" would

change its pattern to "11111111".

The signed left shift operator "<<" shifts a bit pattern to the left, and the signed right

shift operator ">>" shifts a bit pattern to the right. The bit pattern is given by the left-

hand operand, and the number of positions to shift by the right-hand operand. The

unsigned right shift operator ">>>" shifts a zero into the leftmost position, while the

leftmost position after ">>" depends on sign extension.

The bitwise & operator performs a bitwise AND operation.

The bitwise ^ operator performs a bitwise exclusive OR operation.

The bitwise | operator performs a bitwise inclusive OR operation.

The following program, BitDemo, uses the bitwise AND operator to print the number

"2" to standard output.

class BitDemo {

 public static void main(String[] args) {

 int bitmask = 0x000F;

 int val = 0x2222;

 System.out.println(val & bitmask); // prints "2"

 }

}

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/BitDemo.java

 - 38 -

Summary of Operators

The following quick reference summarizes the operators supported by the Java

programming language.

Simple Assignment Operator

= Simple assignment operator

Arithmetic Operators

+ Additive operator (also used for String concatenation)

- Subtraction operator

* Multiplication operator

/ Division operator

% Remainder operator

Unary Operators

+ Unary plus operator; indicates positive value (numbers are

positive without this, however)

- Unary minus operator; negates an expression

++ Increment operator; increments a value by 1

-- Decrement operator; decrements a value by 1

! Logical compliment operator; inverts the value of a boolean

Equality and Relational Operators

== Equal to

!= Not equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

Conditional Operators

&& Conditional-AND

|| Conditional-OR

?: Ternary (shorthand for if-then-else statement)

Type Comparison Operator

instanceof Compares an object to a specified type

Bitwise and Bit Shift Operators

~ Unary bitwise complement

<< Signed left shift

>> Signed right shift

>>> Unsigned right shift

& Bitwise AND

^ Bitwise exclusive OR

| Bitwise inclusive OR

 - 39 -

Questions and Exercises: Operators

Questions

1. Consider the following code snippet.

 arrayOfInts[j] > arrayOfInts[j+1]

Which operators does the code contain?

2. Consider the following code snippet.

 int i = 10;

 int n = i++%5;

What are the values of i and n after the code is executed?

What are the final values of i and n if instead of using the postfix increment

operator (i++), you use the prefix version (++i))?

3. To invert the value of a boolean, which operator would you use?

4. Which operator is used to compare two values, = or == ?

5. Explain the following code sample: result = someCondition ? value1 :

Exercises

1. Change the following program to use compound assignments:

class ArithmeticDemo {

 public static void main (String[] args){

 int result = 1 + 2; // result is now 3

 System.out.println(result);

 result = result - 1; // result is now 2

 System.out.println(result);

 result = result * 2; // result is now 4

 System.out.println(result);

 result = result / 2; // result is now 2

 System.out.println(result);

 result = result + 8; // result is now 10

 result = result % 7; // result is now 3

 System.out.println(result);

 }

}

 - 40 -

2. In the following program, explain why the value "6" is printed
twice in a row:

class PrePostDemo {

 public static void main(String[] args){

 int i = 3;

 i++;

 System.out.println(i); // "4"

 ++i;

 System.out.println(i); // "5"

 System.out.println(++i); // "6"

 System.out.println(i++); // "6"

 System.out.println(i); // "7"

 }

}

 - 41 -

Expressions, Statements, and Blocks

Now that you understand variables and operators, it's time to learn about expressions,

statements, and blocks. Operators may be used in building expressions, which compute

values; expressions are the core components of statements; statements may be grouped

into blocks.

Expressions

An expression is a construct made up of variables, operators, and method invocations,

which are constructed according to the syntax of the language, that evaluates to a single

value. You've already seen examples of expressions, illustrated in bold below:

 int cadence = 0;

 anArray[0] = 100;

 System.out.println("Element 1 at index 0: " + anArray[0]);

 int result = 1 + 2; // result is now 3

 if(value1 == value2) System.out.println("value1 == value2");

The data type of the value returned by an expression depends on the elements used in

the expression. The expression cadence = 0 returns an int because the assignment

operator returns a value of the same data type as its left-hand operand; in this case,

cadence is an int. As you can see from the other expressions, an expression can return

other types of values as well, such as boolean or String.

The Java programming language allows you to construct compound expressions from

various smaller expressions as long as the data type required by one part of the

expression matches the data type of the other. Here's an example of a compound

expression:

1 * 2 * 3

In this particular example, the order in which the expression is evaluated is unimportant

because the result of multiplication is independent of order; the outcome is always the

same, no matter in which order you apply the multiplications. However, this is not true

of all expressions. For example, the following expression gives different results,

depending on whether you perform the addition or the division operation first:

x + y / 100 // ambiguous

You can specify exactly how an expression will be evaluated using balanced

parenthesis: (and). For example, to make the previous expression unambiguous, you

could write the following:

(x + y) / 100 // unambiguous, recommended

If you don't explicitly indicate the order for the operations to be performed, the order is

determined by the precedence assigned to the operators in use within the expression.

Operators that have a higher precedence get evaluated first. For example, the division

 - 42 -

operator has a higher precedence than does the addition operator. Therefore, the

following two statements are equivalent:

x + y / 100

x + (y / 100) // unambiguous, recommended

When writing compound expressions, be explicit and indicate with parentheses which

operators should be evaluated first. This practice makes code easier to read and to

maintain.

Statements

Statements are roughly equivalent to sentences in natural languages. A statement forms

a complete unit of execution. The following types of expressions can be made into a

statement by terminating the expression with a semicolon (;).

 Assignment expressions

 Any use of ++ or --

 Method invocations

 Object creation expressions

Such statements are called expression statements. Here are some examples of

expression statements.

aValue = 8933.234; // assignment statement

aValue++; // increment statement

System.out.println("Hello World!"); // method invocation statement

Bicycle myBike = new Bicycle(); // object creation statement

In addition to expression statements, there are two other kinds of statements:

declaration statements and control flow statements. A declaration statement declares a

variable. You've seen many examples of declaration statements already:

double aValue = 8933.234; //declaration statement

Finally, control flow statements regulate the order in which statements get executed.

You'll learn about control flow statements in the next section, Control Flow Statements

Blocks

A block is a group of zero or more statements between balanced braces and can be used

anywhere a single statement is allowed. The following example, BlockDemo, illustrates

the use of blocks:

class BlockDemo {

 public static void main(String[] args) {

 boolean condition = true;

 if (condition) { // begin block 1

 System.out.println("Condition is true.");

 } // end block one

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/flow.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/BlockDemo.java

 - 43 -

 else { // begin block 2

 System.out.println("Condition is false.");

 } // end block 2

 }

}

 - 44 -

Questions and Exercises: Expressions, Statements, and
Blocks

Questions

1. Operators may be used in building ___, which compute values.

2. Expressions are the core components of ___.

3. Statements may be grouped into ___.

4. The following code snippet is an example of a ___ expression.

 1 * 2 * 3

5. Statements are roughly equivalent to sentences in natural languages, but instead

of ending with a period, a statement ends with a ___.

6. A block is a group of zero or more statements between balanced ___ and can be

used anywhere a single statement is allowed.

Exercises

Identify the following kinds of expression statements:

 aValue = 8933.234;

 aValue++;

 System.out.println("Hello World!");

 Bicycle myBike = new Bicycle();

 - 45 -

Control Flow Statements

The statements inside your source files are generally executed from top to bottom, in the

order that they appear. Control flow statements, however, break up the flow of

execution by employing decision making, looping, and branching, enabling your

program to conditionally execute particular blocks of code. This section describes the

decision-making statements (if-then, if-then-else, switch), the looping statements

(for, while, do-while), and the branching statements (break, continue, return)

supported by the Java programming language.

 - 46 -

The if-then and if-then-else Statements

The if-then Statement

The if-then statement is the most basic of all the control flow statements. It tells your

program to execute a certain section of code only if a particular test evaluates to true.

For example, the Bicycle class could allow the brakes to decrease the bicycle's speed

only if the bicycle is already in motion. One possible implementation of the

applyBrakes method could be as follows:

void applyBrakes(){

 if (isMoving){ // the "if" clause: bicycle must be moving

 currentSpeed--; // the "then" clause: decrease current speed

 }

}

If this test evaluates to false (meaning that the bicycle is not in motion), control jumps

to the end of the if-then statement.

In addition, the opening and closing braces are optional, provided that the "then" clause

contains only one statement:

void applyBrakes(){

 if (isMoving) currentSpeed--; // same as above, but without

braces

}

Deciding when to omit the braces is a matter of personal taste. Omitting them can make

the code more brittle. If a second statement is later added to the "then" clause, a

common mistake would be forgetting to add the newly required braces. The compiler

cannot catch this sort of error; you'll just get the wrong results.

The if-then-else Statement

The if-then-else statement provides a secondary path of execution when an "if"

clause evaluates to false. You could use an if-then-else statement in the

applyBrakes method to take some action if the brakes are applied when the bicycle is

not in motion. In this case, the action is to simply print an error message stating that the

bicycle has already stopped.

void applyBrakes(){

 if (isMoving) {

 currentSpeed--;

 } else {

 System.err.println("The bicycle has already stopped!");

 }

}

The following program, IfElseDemo, assigns a grade based on the value of a test score:

an A for a score of 90% or above, a B for a score of 80% or above, and so on.

class IfElseDemo {

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/IfElseDemo.java

 - 47 -

 public static void main(String[] args) {

 int testscore = 76;

 char grade;

 if (testscore >= 90) {

 grade = 'A';

 } else if (testscore >= 80) {

 grade = 'B';

 } else if (testscore >= 70) {

 grade = 'C';

 } else if (testscore >= 60) {

 grade = 'D';

 } else {

 grade = 'F';

 }

 System.out.println("Grade = " + grade);

 }

}

The output from the program is:

 Grade = C

You may have noticed that the value of testscore can satisfy more than one

expression in the compound statement: 76 >= 70 and 76 >= 60. However, once a

condition is satisfied, the appropriate statements are executed (grade = 'C';) and the

remaining conditions are not evaluated.

 - 48 -

The switch Statement

Unlike if-then and if-then-else, the switch statement allows for any number of

possible execution paths. A switch works with the byte, short, char, and int

primitive data types. It also works with enumerated types (discussed in Classes and

Inheritance) and a few special classes that "wrap" certain primitive types: Character,

Byte, Short, and Integer (discussed in Simple Data Objects).

The following program, SwitchDemo, declares an int named month whose value

represents a month out of the year. The program displays the name of the month, based

on the value of month, using the switch statement.

class SwitchDemo {

 public static void main(String[] args) {

 int month = 8;

 switch (month) {

 case 1: System.out.println("January"); break;

 case 2: System.out.println("February"); break;

 case 3: System.out.println("March"); break;

 case 4: System.out.println("April"); break;

 case 5: System.out.println("May"); break;

 case 6: System.out.println("June"); break;

 case 7: System.out.println("July"); break;

 case 8: System.out.println("August"); break;

 case 9: System.out.println("September"); break;

 case 10: System.out.println("October"); break;

 case 11: System.out.println("November"); break;

 case 12: System.out.println("December"); break;

 default: System.out.println("Invalid month.");break;

 }

 }

}

In this case, "August" is printed to standard output.

The body of a switch statement is known as a switch block. Any statement immediately

contained by the switch block may be labeled with one or more case or default

labels. The switch statement evaluates its expression and executes the appropriate

case.

Of course, you could also implement the same thing with if-then-else statements:

int month = 8;

if (month == 1) {

 System.out.println("January");

} else if (month == 2) {

 System.out.println("February");

}

. . . // and so on

Deciding whether to use if-then-else statements or a switch statement is sometimes

a judgment call. You can decide which one to use based on readability and other factors.

An if-then-else statement can be used to make decisions based on ranges of values

http://java.sun.com/docs/books/tutorial/java/javaOO/enum.html
http://java.sun.com/docs/books/tutorial/java/javaOO/enum.html
http://java.sun.com/javase/6/docs/api/java/lang/Character.html
http://java.sun.com/javase/6/docs/api/java/lang/Byte.html
http://java.sun.com/javase/6/docs/api/java/lang/Short.html
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html
http://java.sun.com/docs/books/tutorial/java/data/index.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/SwitchDemo.java

 - 49 -

or conditions, whereas a switch statement can make decisions based only on a single

integer or enumerated value.

Another point of interest is the break statement after each case. Each break statement

terminates the enclosing switch statement. Control flow continues with the first

statement following the switch block. The break statements are necessary because

without them, case statements fall through; that is, without an explicit break, control

will flow sequentially through subsequent case statements. The following program,

SwitchDemo2, illustrates why it might be useful to have case statements fall through:

class SwitchDemo2 {

 public static void main(String[] args) {

 int month = 2;

 int year = 2000;

 int numDays = 0;

 switch (month) {

 case 1:

 case 3:

 case 5:

 case 7:

 case 8:

 case 10:

 case 12:

 numDays = 31;

 break;

 case 4:

 case 6:

 case 9:

 case 11:

 numDays = 30;

 break;

 case 2:

 if (((year % 4 == 0) && !(year % 100 == 0))

 || (year % 400 == 0))

 numDays = 29;

 else

 numDays = 28;

 break;

 default:

 System.out.println("Invalid month.");

 break;

 }

 System.out.println("Number of Days = " + numDays);

 }

}

This is the output from the program.

 Number of Days = 29

Technically, the final break is not required because flow would fall out of the switch

statement anyway. However, we recommend using a break so that modifying the code

is easier and less error-prone. The default section handles all values that aren't

explicitly handled by one of the case sections.

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/SwitchDemo2.java

 - 50 -

The while and do-while Statements

The while statement continually executes a block of statements while a particular

condition is true. Its syntax can be expressed as:

while (expression) {

 statement(s)

}

The while statement evaluates expression, which must return a boolean value. If the

expression evaluates to true, the while statement executes the statement(s) in the

while block. The while statement continues testing the expression and executing its

block until the expression evaluates to false. Using the while statement to print the

values from 1 through 10 can be accomplished as in the following WhileDemo program:

class WhileDemo {

 public static void main(String[] args){

 int count = 1;

 while (count < 11) {

 System.out.println("Count is: " + count);

 count++;

 }

 }

}

You can implement an infinite loop using the while statement as follows:

while (true){

 // your code goes here

}

The Java programming language also provides a do-while statement, which can be

expressed as follows:

do {

 statement(s)

} while (expression);

The difference between do-while and while is that do-while evaluates its expression

at the bottom of the loop instead of the top. Therefore, the statements within the do

block are always executed at least once, as shown in the following DoWhileDemo

program:

class DoWhileDemo {

 public static void main(String[] args){

 int count = 1;

 do {

 System.out.println("Count is: " + count);

 count++;

 } while (count <= 11);

 }

}

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/WhileDemo.java
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/DoWhileDemo.java

 - 51 -

The for Statement

The for statement provides a compact way to iterate over a range of values.

Programmers often refer to it as the "for loop" because of the way in which it repeatedly

loops until a particular condition is satisfied. The general form of the for statement can

be expressed as follows:

for (initialization; termination; increment) {

 statement(s)

}

When using this version of the for statement, keep in mind that:

 The initialization expression initializes the loop; it's executed once, as the loop

begins.

 When the termination expression evaluates to false, the loop terminates.

 The increment expression is invoked after each iteration through the loop; it is

perfectly acceptable for this expression to increment or decrement a value.

The following program, ForDemo, uses the general form of the for statement to print

the numbers 1 through 10 to standard output:

class ForDemo {

 public static void main(String[] args){

 for(int i=1; i<11; i++){

 System.out.println("Count is: " + i);

 }

 }

}

The output of this program is:

Count is: 1

Count is: 2

Count is: 3

Count is: 4

Count is: 5

Count is: 6

Count is: 7

Count is: 8

Count is: 9

Count is: 10

Notice how the code declares a variable within the initialization expression. The scope

of this variable extends from its declaration to the end of the block governed by the for

statement, so it can be used in the termination and increment expressions as well. If the

variable that controls a for statement is not needed outside of the loop, it's best to

declare the variable in the initialization expression. The names i, j, and k are often used

to control for loops; declaring them within the initialization expression limits their life

span and reduces errors.

The three expressions of the for loop are optional; an infinite loop can be created as

follows:

for (; ;) { // infinite loop

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/ForDemo.java

 - 52 -

 // your code goes here

}

The for statement also has another form designed for iteration through Collections and

arrays This form is sometimes referred to as the enhanced for statement, and can be

used to make your loops more compact and easy to read. To demonstrate, consider the

following array, which holds the numbers 1 through 10:

int[] numbers = {1,2,3,4,5,6,7,8,9,10};

The following program, EnhancedForDemo, uses the enhanced for to loop through the

array:

class EnhancedForDemo {

 public static void main(String[] args){

 int[] numbers = {1,2,3,4,5,6,7,8,9,10};

 for (int item : numbers) {

 System.out.println("Count is: " + item);

 }

 }

}

In this example, the variable item holds the current value from the numbers array. The

output from this program is the same as before:

Count is: 1

Count is: 2

Count is: 3

Count is: 4

Count is: 5

Count is: 6

Count is: 7

Count is: 8

Count is: 9

Count is: 10

We recommend using this form of the for statement instead of the general form

whenever possible.

http://java.sun.com/docs/books/tutorial/collections/index.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/arrays.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/EnhancedForDemo.java

 - 53 -

Branching Statements

The break Statement

The break statement has two forms: labeled and unlabeled. You saw the unlabeled form

in the previous discussion of the switch statement. You can also use an unlabeled

break to terminate a for, while, or do-while loop, as shown in the following

BreakDemo program:

class BreakDemo {

 public static void main(String[] args) {

 int[] arrayOfInts = { 32, 87, 3, 589, 12, 1076,

 2000, 8, 622, 127 };

 int searchfor = 12;

 int i;

 boolean foundIt = false;

 for (i = 0; i < arrayOfInts.length; i++) {

 if (arrayOfInts[i] == searchfor) {

 foundIt = true;

 break;

 }

 }

 if (foundIt) {

 System.out.println("Found " + searchfor

 + " at index " + i);

 } else {

 System.out.println(searchfor

 + " not in the array");

 }

 }

}

This program searches for the number 12 in an array. The break statement, shown in

boldface, terminates the for loop when that value is found. Control flow then transfers

to the print statement at the end of the program. This program's output is:

Found 12 at index 4

An unlabeled break statement terminates the innermost switch, for, while, or do-

while statement, but a labeled break terminates an outer statement. The following

program, BreakWithLabelDemo, is similar to the previous program, but uses nested for

loops to search for a value in a two-dimensional array. When the value is found, a

labeled break terminates the outer for loop (labeled "search"):

class BreakWithLabelDemo {

 public static void main(String[] args) {

 int[][] arrayOfInts = { { 32, 87, 3, 589 },

 { 12, 1076, 2000, 8 },

 { 622, 127, 77, 955 }

 };

 int searchfor = 12;

 int i;

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/BreakDemo.java
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/BreakWithLabelDemo.java

 - 54 -

 int j = 0;

 boolean foundIt = false;

 search:

 for (i = 0; i < arrayOfInts.length; i++) {

 for (j = 0; j < arrayOfInts[i].length; j++) {

 if (arrayOfInts[i][j] == searchfor) {

 foundIt = true;

 break search;

 }

 }

 }

 if (foundIt) {

 System.out.println("Found " + searchfor +

 " at " + i + ", " + j);

 } else {

 System.out.println(searchfor

 + " not in the array");

 }

 }

}

This is the output of the program.

 Found 12 at 1, 0

The break statement terminates the labeled statement; it does not transfer the flow of

control to the label. Control flow is transferred to the statement immediately following

the labeled (terminated) statement.

The continue Statement

The continue statement skips the current iteration of a for, while , or do-while loop.

The unlabeled form skips to the end of the innermost loop's body and evaluates the

boolean expression that controls the loop. The following program, ContinueDemo ,

steps through a String, counting the occurences of the letter "p". If the current

character is not a p, the continue statement skips the rest of the loop and proceeds to

the next character. If it is a "p", the program increments the letter count.

class ContinueDemo {

 public static void main(String[] args) {

 String searchMe = "peter piper picked a peck of pickled

peppers";

 int max = searchMe.length();

 int numPs = 0;

 for (int i = 0; i < max; i++) {

 //interested only in p's

 if (searchMe.charAt(i) != 'p')

 continue;

 //process p's

 numPs++;

 }

 System.out.println("Found " + numPs + " p's in the string.");

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/ContinueDemo.java

 - 55 -

 }

}

Here is the output of this program:

Found 9 p's in the string.

To see this effect more clearly, try removing the continue statement and recompiling.

When you run the program again, the count will be wrong, saying that it found 35 p's

instead of 9.

A labeled continue statement skips the current iteration of an outer loop marked with

the given label. The following example program, ContinueWithLabelDemo, uses nested

loops to search for a substring within another string. Two nested loops are required: one

to iterate over the substring and one to iterate over the string being searched. The

following program, ContinueWithLabelDemo, uses the labeled form of continue to skip

an iteration in the outer loop.

class ContinueWithLabelDemo {

 public static void main(String[] args) {

 String searchMe = "Look for a substring in me";

 String substring = "sub";

 boolean foundIt = false;

 int max = searchMe.length() - substring.length();

 test:

 for (int i = 0; i <= max; i++) {

 int n = substring.length();

 int j = i;

 int k = 0;

 while (n-- != 0) {

 if (searchMe.charAt(j++)

 != substring.charAt(k++)) {

 continue test;

 }

 }

 foundIt = true;

 break test;

 }

 System.out.println(foundIt ? "Found it" :

 "Didn't find it");

 }

}

Here is the output from this program.

 Found it

The return Statement

The last of the branching statements is the return statement. The return statement

exits from the current method, and control flow returns to where the method was

invoked. The return statement has two forms: one that returns a value, and one that

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/ContinueWithLabelDemo.java

 - 56 -

doesn't. To return a value, simply put the value (or an expression that calculates the

value) after the return keyword.

 return ++count;

The data type of the returned value must match the type of the method's declared return

value. When a method is declared void, use the form of return that doesn't return a

value.
 return;

The Classes and Objects lesson will cover everything you need to know about writing

methods.

http://java.sun.com/docs/books/tutorial/java/javaOO/methods.html

 - 57 -

Summary of Control Flow Statements

The if-then statement is the most basic of all the control flow statements. It tells your

program to execute a certain section of code only if a particular test evaluates to true.

The if-then-else statement provides a secondary path of execution when an "if"

clause evaluates to false. Unlike if-then and if-then-else, the switch statement

allows for any number of possible execution paths. The while and do-while statements

continually execute a block of statements while a particular condition is true. The

difference between do-while and while is that do-while evaluates its expression at the

bottom of the loop instead of the top. Therefore, the statements within the do block are

always executed at least once. The for statement provides a compact way to iterate over

a range of values. It has two forms, one of which was designed for looping through

collections and arrays.

 - 58 -

Questions and Exercises: Control Flow Statements

Questions

1. The most basic control flow statement supported by the Java programming

language is the ___ statement.

2. The ___ statement allows for any number of possible execution paths.

3. The ___ statement is similar to the while statement, but evaluates its expression

at the ___ of the loop.

4. How do you write an infinite loop using the for statement?

5. How do you write an infinite loop using the while statement?

Exercises

1. Consider the following code snippet.

if (aNumber >= 0)

if (aNumber == 0) System.out.println("first string");

else System.out.println("second string");

System.out.println("third string");

What output do you think the code will produce if aNumber is 3?

Write a test program containing the previous code snippet; make aNumber 3.

What is the output of the program? Is it what you predicted? Explain why the

output is what it is; in other words, what is the control flow for the code snippet?

Using only spaces and line breaks, reformat the code snippet to make the control

flow easier to understand.

Use braces, { and }, to further clarify the code.

 - 59 -

Lesson: Classes and Objects

With the knowledge you now have of the basics of the Java programming language, you

can learn to write your own classes. In this lesson, you will find information about

defining your own classes, including declaring member variables, methods, and

constructors.

You will learn to use your classes to create objects, and how to use the objects you

create.

This lesson also covers nesting classes within other classes, enumerations, and

annotations.

Classes

This section shows you the anatomy of a class, and how to declare fields, methods, and

constructors.

Objects

This section covers creating and using objects. You will learn how to instantiate an

object, and, once instantiated, how to use the dot operator to access the object's instance

variables and methods.

More on Classes

This section covers more aspects of classes that depend on using object references and

the dot operator that you learned about in the preceding section: returning values from

methods, the this keyword, class vs. instance members, and access control.

Nested Classes

Static nested classes, inner classes, anonymous inner classes, and local classes are

covered.

Enum Types

This section covers enumerations, specialized classes that allow you to define and use

sets of constants.

Annotations

Annotations allow you to add information to your program that is not actually part of

the program. This section describes three built-in annotations that you should know

about.

http://java.sun.com/docs/books/tutorial/java/javaOO/classes.html
http://java.sun.com/docs/books/tutorial/java/javaOO/objects.html
http://java.sun.com/docs/books/tutorial/java/javaOO/more.html
http://java.sun.com/docs/books/tutorial/java/javaOO/nested.html
http://java.sun.com/docs/books/tutorial/java/javaOO/enum.html
http://java.sun.com/docs/books/tutorial/java/javaOO/annotations.html

 - 60 -

Classes

The introduction to object-oriented concepts in the lesson titled Object-oriented

Programming Concepts used a bicycle class as an example, with racing bikes, mountain

bikes, and tandem bikes as subclasses. Here is sample code for a possible

implementation of a Bicycle class, to give you an overview of a class declaration.

Subsequent sections of this lesson will back up and explain class declarations step by

step. For the moment, don't concern yourself with the details.

public class Bicycle {

 // the Bicycle class has three fields

 public int cadence;

 public int gear;

 public int speed;

 // the Bicycle class has one constructor

 public Bicycle(int startCadence, int startSpeed, int startGear) {

 gear = startGear;

 cadence = startCadence;

 speed = startSpeed;

 }

 // the Bicycle class has four methods

 public void setCadence(int newValue) {

 cadence = newValue;

 }

 public void setGear(int newValue) {

 gear = newValue;

 }

 public void applyBrake(int decrement) {

 speed -= decrement;

 }

 public void speedUp(int increment) {

 speed += increment;

 }

}

A class declaration for a MountainBike class that is a subclass of Bicycle might look

like this:

public class MountainBike extends Bicycle {

 // the MountainBike subclass has one field

 public int seatHeight;

 // the MountainBike subclass has one constructor

 public MountainBike(int startHeight, int startCadence, int

startSpeed, int startGear) {

 super(startCadence, startSpeed, startGear);

 seatHeight = startHeight;

 }

 // the MountainBike subclass has one method

http://java.sun.com/docs/books/tutorial/java/concepts/index.html
http://java.sun.com/docs/books/tutorial/java/concepts/index.html

 - 61 -

 public void setHeight(int newValue) {

 seatHeight = newValue;

 }

}

MountainBike inherits all the fields and methods of Bicycle and adds the field

seatHeight and a method to set it (mountain bikes have seats that can be moved up and

down as the terrain demands).

 - 62 -

Declaring Classes

You've seen classes defined in the following way:

class MyClass {

 //field, constructor, and method declarations

}

This is a class declaration. The class body (the area between the braces) contains all the

code that provides for the life cycle of the objects created from the class: constructors

for initializing new objects, declarations for the fields that provide the state of the class

and its objects, and methods to implement the behavior of the class and its objects.

The preceding class declaration is a minimal one—it contains only those components of

a class declaration that are required. You can provide more information about the class,

such as the name of its superclass, whether it implements any interfaces, and so on, at

the start of the class declaration. For example,

class MyClass extends MySuperClass implements YourInterface {

 //field, constructor, and method declarations

}

means that MyClass is a subclass of MySuperClass and that it implements the

YourInterface interface.

You can also add modifiers like public or private at the very beginning—so you can see

that the opening line of a class declaration can become quite complicated. The modifiers

public and private, which determine what other classes can access MyClass, are

discussed later in this lesson. The lesson on interfaces and inheritance will explain how

and why you would use the extends and implements keywords in a class declaration. For

the moment you do not need to worry about these extra complications.

In general, class declarations can include these components, in order:

1. Modifiers such as public, private, and a number of others that you will encounter

later.

2. The class name, with the initial letter capitalized by convention.

3. The name of the class's parent (superclass), if any, preceded by the keyword

extends. A class can only extend (subclass) one parent.

4. A comma-separated list of interfaces implemented by the class, if any, preceded

by the keyword implements. A class can implement more than one interface.

5. The class body, surrounded by braces, {}.

 - 63 -

Declaring Member Variables

There are several kinds of variables:

 Member variables in a class—these are called fields.

 Variables in a method or block of code—these are called local variables.

 Variables in method declarations—these are called parameters.

The Bicycle class uses the following lines of code to define its fields:

public int cadence;

public int gear;

public int speed;

Field declarations are composed of three components, in order:

1. Zero or more modifiers, such as public or private.

2. The field's type.

3. The field's name.

The fields of Bicycle are named cadence, gear, and speed and are all of data type

integer (int). The public keyword identifies these fields as public members, accessible

by any object that can access the class.

Access Modifiers

The first (left-most) modifier used lets you control what other classes have access to a

member field. For the moment, consider only public and private. Other access

modifiers will be discussed later.

 public modifier—the field is accessible from all classes.

 private modifier—the field is accessible only within its own class.

In the spirit of encapsulation, it is common to make fields private. This means that they

can only be directly accessed from the Bicycle class. We still need access to these

values, however. This can be done indirectly by adding public methods that obtain the

field values for us:

public class Bicycle {

 private int cadence;

 private int gear;

 private int speed;

 public Bicycle(int startCadence, int startSpeed, int startGear)

{

 gear = startGear;

 cadence = startCadence;

 speed = startSpeed;

 }

 public int getCadence() {

 return cadence;

 - 64 -

 }

 public void setCadence(int newValue) {

 cadence = newValue;

 }

 public int getGear() {

 return gear;

 }

 public void setGear(int newValue) {

 gear = newValue;

 }

 public int getSpeed() {

 return speed;

 }

 public void applyBrake(int decrement) {

 speed -= decrement;

 }

 public void speedUp(int increment) {

 speed += increment;

 }

}

Types

All variables must have a type. You can use primitive types such as int, float,

boolean, etc. Or you can use reference types, such as strings, arrays, or objects.

Variable Names

All variables, whether they are fields, local variables, or parameters, follow the same

naming rules and conventions that were covered in the Language Basics lesson,

Variables—Naming .

In this lesson, be aware that the same naming rules and conventions are used for method

and class names, except that

 the first letter of a class name should be capitalized, and

 the first (or only) word in a method name should be a verb.

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/variables.html#naming

 - 65 -

Defining Methods

Here is an example of a typical method declaration:

public double calculateAnswer(double wingSpan, int numberOfEngines,

double length, double grossTons) {

 //do the calculation here

}

The only required elements of a method declaration are the method's return type, name,

a pair of parentheses, (), and a body between braces, {}.

More generally, method declarations have six components, in order:

1. Modifiers—such as public, private, and others you will learn about later.

2. The return type—the data type of the value returned by the method, or void if

the method does not return a value.

3. The method name—the rules for field names apply to method names as well, but

the convention is a little different.

4. The parameter list in parenthesis—a comma-delimited list of input parameters,

preceded by their data types, enclosed by parentheses, (). If there are no

parameters, you must use empty parentheses.

5. An exception list—to be discussed later.

6. The method body, enclosed between braces—the method's code, including the

declaration of local variables, goes here.

Modifiers, return types, and parameters will be discussed later in this lesson. Exceptions

are discussed in a later lesson.

Definition: Two of the components of a method declaration comprise the method

signature—the method's name and the parameter types.

The signature of the method declared above is:

calculateAnswer(double, int, double, double)

Naming a Method

Although a method name can be any legal identifier, code conventions restrict method

names. By convention, method names should be a verb in lowercase or a multi-word

name that begins with a verb in lowercase, followed by adjectives, nouns, etc. In multi-

word names, the first letter of each of the second and following words should be

capitalized. Here are some examples:

run

runFast

getBackground

getFinalData

compareTo

setX

isEmpty

 - 66 -

Typically, a method has a unique name within its class. However, a method might have

the same name as other methods due to method overloading.

Overloading Methods

The Java programming language supports overloading methods, and Java can

distinguish between methods with different method signatures. This means that methods

within a class can have the same name if they have different parameter lists (there are

some qualifications to this that will be discussed in the lesson titled "Interfaces and

Inheritance").

Suppose that you have a class that can use calligraphy to draw various types of data

(strings, integers, and so on) and that contains a method for drawing each data type. It is

cumbersome to use a new name for each method—for example, drawString,

drawInteger, drawFloat, and so on. In the Java programming language, you can use

the same name for all the drawing methods but pass a different argument list to each

method. Thus, the data drawing class might declare four methods named draw, each of

which has a different parameter list.

public class DataArtist {

 ...

 public void draw(String s) {

 ...

 }

 public void draw(int i) {

 ...

 }

 public void draw(double f) {

 ...

 }

 public void draw(int i, double f) {

 ...

 }

}

Overloaded methods are differentiated by the number and the type of the arguments

passed into the method. In the code sample, draw(String s) and draw(int i) are

distinct and unique methods because they require different argument types.

You cannot declare more than one method with the same name and the same number

and type of arguments, because the compiler cannot tell them apart.

The compiler does not consider return type when differentiating methods, so you cannot

declare two methods with the same signature even if they have a different return type.

Note: Overloaded methods should be used sparingly, as they can make code much less

readable.

 - 67 -

Providing Constructors for Your Classes

A class contains constructors that are invoked to create objects from the class blueprint.

Constructor declarations look like method declarations—except that they use the name

of the class and have no return type. For example, Bicycle has one constructor:

public Bicycle(int startCadence, int startSpeed, int startGear) {

 gear = startGear;

 cadence = startCadence;

 speed = startSpeed;

}

To create a new Bicycle object called myBike, a constructor is called by the new

operator:

Bicycle myBike = new Bicycle(30, 0, 8);

new Bicycle(30, 0, 8) creates space in memory for the object and initializes its

fields.

Although Bicycle only has one constructor, it could have others, including a no-

argument constructor:

public Bicycle() {

 gear = 1;

 cadence = 10;

 speed = 0;

}

Bicycle yourBike = new Bicycle(); invokes the no-argument constructor to create

a new Bicycle object called yourBike.

Both constructors could have been declared in Bicycle because they have different

argument lists. As with methods, the Java platform differentiates constructors on the

basis of the number of arguments in the list and their types. You cannot write two

constructors that have the same number and type of arguments for the same class,

because the platform would not be able to tell them apart. Doing so causes a compile-

time error.

You don't have to provide any constructors for your class, but you must be careful when

doing this. The compiler automatically provides a no-argument, default constructor for

any class without constructors. This default constructor will call the no-argument

constructor of the superclass. In this situation, the compiler will complain if the

superclass doesn't have a no-argument constructor so you must verify that it does. If

your class has no explicit superclass, then it has an implicit superclass of Object, which

does have a no-argument constructor.

You can use a superclass constructor yourself. The MountainBike class at the

beginning of this lesson did just that. This will be discussed later, in the lesson on

interfaces and inheritance.

You can use access modifiers in a constructor's declaration to control which other

classes can call the constructor.

 - 68 -

Note : If another class cannot call a MyClass constructor, it cannot directly create

MyClass objects.

 - 69 -

Passing Information to a Method or a Constructor

The declaration for a method or a constructor declares the number and the type of the

arguments for that method or constructor. For example, the following is a method that

computes the monthly payments for a home loan, based on the amount of the loan, the

interest rate, the length of the loan (the number of periods), and the future value of the

loan:

public double computePayment(double loanAmt,

 double rate,

 double futureValue,

 int numPeriods) {

 double interest = rate / 100.0;

 double partial1 = Math.pow((1 + interest), -numPeriods);

 double denominator = (1 - partial1) / interest;

 double answer = (-loanAmt / denominator)

 - ((futureValue * partial1) / denominator);

 return answer;

}

This method has four parameters: the loan amount, the interest rate, the future value and

the number of periods. The first three are double-precision floating point numbers, and

the fourth is an integer. The parameters are used in the method body and at runtime will

take on the values of the arguments that are passed in.

Note : Parameters refers to the list of variables in a method declaration. Arguments are

the actual values that are passed in when the method is invoked. When you invoke a

method, the arguments used must match the declaration's parameters in type and order.

Parameter Types

You can use any data type for a parameter of a method or a constructor. This includes

primitive data types, such as doubles, floats, and integers, as you saw in the

computePayment method, and reference data types, such as objects and arrays.

Here's an example of a method that accepts an array as an argument. In this example,

the method creates a new Polygon object and initializes it from an array of Point

objects (assume that Point is a class that represents an x, y coordinate):

public Polygon polygonFrom(Point[] corners) {

 // method body goes here

}

Note : The Java programming language doesn't let you pass methods into methods. But

you can pass an object into a method and then invoke the object's methods.

 - 70 -

Arbitrary Number of Arguments

You can use a construct called varargs to pass an arbitrary number of values to a

method. You use varargs when you don't know how many of a particular type of

argument will be passed to the method. It's a shortcut to creating an array manually (the

previous method could have used varargs rather than an array).

To use varargs, you follow the type of the last parameter by an ellipsis (three dots, ...),

then a space, and the parameter name. The method can then be called with any number

of that parameter, including none.

public Polygon polygonFrom(Point... corners) {

 int numberOfSides = corners.length;

 double squareOfSide1, lengthOfSide1;

 squareOfSide1 = (corners[1].x - corners[0].x)*(corners[1].x -

corners[0].x)

 + (corners[1].y - corners[0].y)*(corners[1].y -

corners[0].y) ;

 lengthOfSide1 = Math.sqrt(squareOfSide1);

 // more method body code follows that creates

 // and returns a polygon connecting the Points

}

You can see that, inside the method, corners is treated like an array. The method can

be called either with an array or with a sequence of arguments. The code in the method

body will treat the parameter as an array in either case.

You will most commonly see varargs with the printing methods; for example, this

printf method:

public PrintStream printf(String format, Object... args)

allows you to print an arbitrary number of objects. It can be called like this:
System.out.printf("%s: %d, %s%n", name, idnum, address);

or like this
System.out.printf("%s: %d, %s, %s, %s%n", name, idnum, address, phone,

email);

or with yet a different number of arguments.

Parameter Names

When you declare a parameter to a method or a constructor, you provide a name for that

parameter. This name is used within the method body to refer to the passed-in

argument.

The name of a parameter must be unique in its scope. It cannot be the same as the name

of another parameter for the same method or constructor, and it cannot be the name of a

local variable within the method or constructor.

A parameter can have the same name as one of the class's fields. If this is the case, the

parameter is said to shadow the field. Shadowing fields can make your code difficult to

read and is conventionally used only within constructors and methods that set a

 - 71 -

particular field. For example, consider the following Circle class and its setOrigin

method:

public class Circle {

 private int x, y, radius;

 public void setOrigin(int x, int y) {

 ...

 }

}

The Circle class has three fields: x, y, and radius. The setOrigin method has two

parameters, each of which has the same name as one of the fields. Each method

parameter shadows the field that shares its name. So using the simple names x or y

within the body of the method refers to the parameter, not to the field. To access the

field, you must use a qualified name. This will be discussed later in this lesson in the

section titled "Using the this Keyword."

Passing Primitive Data Type Arguments

Primitive arguments, such as an int or a double, are passed into methods by value.

This means that any changes to the values of the parameters exist only within the scope

of the method. When the method returns, the parameters are gone and any changes to

them are lost. Here is an example:
public class PassPrimitiveByValue {

 public static void main(String[] args) {

 int x = 3;

 //invoke passMethod() with x as argument

 passMethod(x);

 // print x to see if its value has changed

 System.out.println("After invoking passMethod, x = " + x);

 }

 // change parameter in passMethod()

 public static void passMethod(int p) {

 p = 10;

 }

}

When you run this program, the output is:

After invoking passMethod, x = 3

Passing Reference Data Type Arguments

Reference data type parameters, such as objects, are also passed into methods by value.

This means that when the method returns, the passed-in reference still references the

same object as before. However, the values of the object's fields can be changed in the

method, if they have the proper access level.

For example, consider a method in an arbitrary class that moves Circle objects:

 - 72 -

public void moveCircle(Circle circle, int deltaX, int deltaY) {

 // code to move origin of circle to x+deltaX, y+deltaY

 circle.setX(circle.getX() + deltaX);

 circle.setY(circle.getY() + deltaY);

 //code to assign a new reference to circle

 circle = new Circle(0, 0);

}

Let the method be invoked with these arguments:

moveCircle(myCircle, 23, 56)

Inside the method, circle initially refers to myCircle. The method changes the x and y

coordinates of the object that circle references (i.e., myCircle) by 23 and 56,

respectively. These changes will persist when the method returns. Then circle is

assigned a reference to a new Circle object with x = y = 0. This reassignment has no

permanence, however, because the reference was passed in by value and cannot change.

Within the method, the object pointed to by circle has changed, but, when the method

returns, myCircle still references the same Circle object as before the method was

called.

 - 73 -

Objects

A typical Java program creates many objects, which as you know, interact by invoking

methods. Through these object interactions, a program can carry out various tasks, such

as implementing a GUI, running an animation, or sending and receiving information

over a network. Once an object has completed the work for which it was created, its

resources are recycled for use by other objects.

Here's a small program, called CreateObjectDemo, that creates three objects: one

Point object and two Rectangle objects. You will need all three source files to

compile this program.

public class CreateObjectDemo {

 public static void main(String[] args) {

 //Declare and create a point object

 //and two rectangle objects.

 Point originOne = new Point(23, 94);

 Rectangle rectOne = new Rectangle(originOne, 100, 200);

 Rectangle rectTwo = new Rectangle(50, 100);

 //display rectOne's width, height, and area

 System.out.println("Width of rectOne: " +

 rectOne.width);

 System.out.println("Height of rectOne: " +

 rectOne.height);

 System.out.println("Area of rectOne: " + rectOne.getArea());

 //set rectTwo's position

 rectTwo.origin = originOne;

 //display rectTwo's position

 System.out.println("X Position of rectTwo: "

 + rectTwo.origin.x);

 System.out.println("Y Position of rectTwo: "

 + rectTwo.origin.y);

 //move rectTwo and display its new position

 rectTwo.move(40, 72);

 System.out.println("X Position of rectTwo: "

 + rectTwo.origin.x);

 System.out.println("Y Position of rectTwo: "

 + rectTwo.origin.y);

 }

}

This program creates, manipulates, and displays information about various objects.

Here's the output:

Width of rectOne: 100

Height of rectOne: 200

Area of rectOne: 20000

X Position of rectTwo: 23

Y Position of rectTwo: 94

X Position of rectTwo: 40

Y Position of rectTwo: 72

http://java.sun.com/docs/books/tutorial/java/javaOO/examples/CreateObjectDemo.java
http://java.sun.com/docs/books/tutorial/java/javaOO/examples/Point.java
http://java.sun.com/docs/books/tutorial/java/javaOO/examples/Rectangle.java

 - 74 -

The following three sections use the above example to describe the life cycle of an

object within a program. From them, you will learn how to write code that creates and

uses objects in your own programs. You will also learn how the system cleans up after

an object when its life has ended.

 - 75 -

Creating Objects

As you know, a class provides the blueprint for objects; you create an object from a

class. Each of the following statements taken from the CreateObjectDemo program

creates an object and assigns it to a variable:

Point originOne = new Point(23, 94);

Rectangle rectOne = new Rectangle(originOne, 100, 200);

Rectangle rectTwo = new Rectangle(50, 100);

The first line creates an object of the Point class, and the second and third lines each

create an object of the Rectangle class.

Each of these statements has three parts (discussed in detail below):

1. Declaration: The code set in bold are all variable declarations that associate a

variable name with an object type.

2. Instantiation: The new keyword is a Java operator that creates the object.

3. Initialization: The new operator is followed by a call to a constructor, which

initializes the new object.

Declaring a Variable to Refer to an Object

Previously, you learned that to declare a variable, you write:

type name;

This notifies the compiler that you will use name to refer to data whose type is type.

With a primitive variable, this declaration also reserves the proper amount of memory

for the variable.

You can also declare a reference variable on its own line. For example:

Point originOne;

If you declare originOne like this, its value will be undetermined until an object is

actually created and assigned to it. Simply declaring a reference variable does not create

an object. For that, you need to use the new operator, as described in the next section.

You must assign an object to originOne before you use it in your code. Otherwise, you

will get a compiler error.

A variable in this state, which currently references no object, can be illustrated as

follows (the variable name, originOne, plus a reference pointing to nothing):

http://java.sun.com/docs/books/tutorial/java/javaOO/examples/CreateObjectDemo.java
http://java.sun.com/docs/books/tutorial/java/javaOO/examples/Point.java
http://java.sun.com/docs/books/tutorial/java/javaOO/examples/Rectangle.java

 - 76 -

Instantiating a Class

The new operator instantiates a class by allocating memory for a new object and

returning a reference to that memory. The new operator also invokes the object

constructor.

Note: The phrase "instantiating a class" means the same thing as "creating an object."

When you create an object, you are creating an "instance" of a class, therefore

"instantiating" a class.

The new operator requires a single, postfix argument: a call to a constructor. The name

of the constructor provides the name of the class to instantiate.

The new operator returns a reference to the object it created. This reference is usually

assigned to a variable of the appropriate type, like:

Point originOne = new Point(23, 94);

The reference returned by the new operator does not have to be assigned to a variable. It

can also be used directly in an expression. For example:

int height = new Rectangle().height;

This statement will be discussed in the next section.

Initializing an Object

Here's the code for the Point class:

public class Point {

 public int x = 0;

 public int y = 0;

 //constructor

 public Point(int a, int b) {

 x = a;

 y = b;

 }

}

This class contains a single constructor. You can recognize a constructor because its

declaration uses the same name as the class and it has no return type. The constructor in

the Point class takes two integer arguments, as declared by the code (int a, int b).

The following statement provides 23 and 94 as values for those arguments:

Point originOne = new Point(23, 94);

The result of executing this statement can be illustrated in the next figure:

 - 77 -

Here's the code for the Rectangle class, which contains four constructors:

public class Rectangle {

 public int width = 0;

 public int height = 0;

 public Point origin;

 // four constructors

 public Rectangle() {

 origin = new Point(0, 0);

 }

 public Rectangle(Point p) {

 origin = p;

 }

 public Rectangle(int w, int h) {

 origin = new Point(0, 0);

 width = w;

 height = h;

 }

 public Rectangle(Point p, int w, int h) {

 origin = p;

 width = w;

 height = h;

 }

 // a method for moving the rectangle

 public void move(int x, int y) {

 origin.x = x;

 origin.y = y;

 }

 // a method for computing the area of the rectangle

 public int getArea() {

 return width * height;

 }

}

Each constructor lets you provide initial values for the rectangle's size and width, using

both primitive and reference types. If a class has multiple constructors, they must have

different signatures. The Java compiler differentiates the constructors based on the

number and the type of the arguments. When the Java compiler encounters the

following code, it knows to call the constructor in the Rectangle class that requires a

Point argument followed by two integer arguments:

Rectangle rectOne = new Rectangle(originOne, 100, 200);

This calls one of Rectangle's constructors that initializes origin to originOne. Also,

the constructor sets width to 100 and height to 200. Now there are two references to

 - 78 -

the same Point object— an object can have multiple references to it, as shown in the

next figure:

The following line of code calls the Rectangle constructor that requires two integer

arguments, which provide the initial values for width and height. If you inspect the

code within the constructor, you will see that it creates a new Point object whose x and

y values are initialized to 0:

Rectangle rectTwo = new Rectangle(50, 100);

The Rectangle constructor used in the following statement doesn't take any arguments,

so it's called a no-argument constructor:

Rectangle rect = new Rectangle();

All classes have at least one constructor. If a class does not explicitly declare any, the

Java compiler automatically provides a no-argument constructor, called the default

constructor. This default constructor calls the class parent's no-argument constructor, or

the Object constructor if the class has no other parent. If the parent has no constructor

(Object does have one), the compiler will reject the program.

 - 79 -

Using Objects

Once you've created an object, you probably want to use it for something. You may

need to use the value of one of its fields, change one of its fields, or call one of its

methods to perform an action.

Referencing an Object's Fields

Object fields are accessed by their name. You must use a name that is unambiguous.

You may use a simple name for a field within its own class. For example, we can add a

statement within the Rectangle class that prints the width and height:

System.out.println("Width and height are: " + width + ", " + height);

In this case, width and height are simple names.

Code that is outside the object's class must use an object reference or expression,

followed by the dot (.) operator, followed by a simple field name, as in:

objectReference.fieldName

For example, the code in the CreateObjectDemo class is outside the code for the

Rectangle class. So to refer to the origin, width, and height fields within the

Rectangle object named rectOne, the CreateObjectDemo class must use the names

rectOne.origin, rectOne.width, and rectOne.height, respectively. The program

uses two of these names to display the width and the height of rectOne:

System.out.println("Width of rectOne: " + rectOne.width);

System.out.println("Height of rectOne: " + rectOne.height);

Attempting to use the simple names width and height from the code in the

CreateObjectDemo class doesn't make sense — those fields exist only within an object

— and results in a compiler error.

Later, the program uses similar code to display information about rectTwo. Objects of

the same type have their own copy of the same instance fields. Thus, each Rectangle

object has fields named origin, width, and height. When you access an instance field

through an object reference, you reference that particular object's field. The two objects

rectOne and rectTwo in the CreateObjectDemo program have different origin,

width, and height fields.

To access a field, you can use a named reference to an object, as in the previous

examples, or you can use any expression that returns an object reference. Recall that the

new operator returns a reference to an object. So you could use the value returned from

new to access a new object's fields:

int height = new Rectangle().height;

This statement creates a new Rectangle object and immediately gets its height. In

essence, the statement calculates the default height of a Rectangle. Note that after this

statement has been executed, the program no longer has a reference to the created

 - 80 -

Rectangle, because the program never stored the reference anywhere. The object is

unreferenced, and its resources are free to be recycled by the Java Virtual Machine.

Calling an Object's Methods

You also use an object reference to invoke an object's method. You append the method's

simple name to the object reference, with an intervening dot operator (.). Also, you

provide, within enclosing parentheses, any arguments to the method. If the method does

not require any arguments, use empty parentheses.

objectReference.methodName(argumentList);

 or

objectReference.methodName();

The Rectangle class has two methods: getArea() to compute the rectangle's area and

move() to change the rectangle's origin. Here's the CreateObjectDemo code that

invokes these two methods:

System.out.println("Area of rectOne: " + rectOne.getArea());

...

rectTwo.move(40, 72);

The first statement invokes rectOne's getArea() method and displays the results. The

second line moves rectTwo because the move() method assigns new values to the

object's origin.x and origin.y.

As with instance fields, objectReference must be a reference to an object. You can use a

variable name, but you also can use any expression that returns an object reference. The

new operator returns an object reference, so you can use the value returned from new to

invoke a new object's methods:

new Rectangle(100, 50).getArea()

The expression new Rectangle(100, 50) returns an object reference that refers to a

Rectangle object. As shown, you can use the dot notation to invoke the new

Rectangle's getArea() method to compute the area of the new rectangle.

Some methods, such as getArea(), return a value. For methods that return a value, you

can use the method invocation in expressions. You can assign the return value to a

variable, use it to make decisions, or control a loop. This code assigns the value

returned by getArea() to the variable areaOfRectangle:

int areaOfRectangle = new Rectangle(100, 50).getArea();

Remember, invoking a method on a particular object is the same as sending a message

to that object. In this case, the object that getArea() is invoked on is the rectangle

returned by the constructor.

The Garbage Collector

Some object-oriented languages require that you keep track of all the objects you create

and that you explicitly destroy them when they are no longer needed. Managing

 - 81 -

memory explicitly is tedious and error-prone. The Java platform allows you to create as

many objects as you want (limited, of course, by what your system can handle), and you

don't have to worry about destroying them. The Java runtime environment deletes

objects when it determines that they are no longer being used. This process is called

garbage collection.

An object is eligible for garbage collection when there are no more references to that

object. References that are held in a variable are usually dropped when the variable goes

out of scope. Or, you can explicitly drop an object reference by setting the variable to

the special value null. Remember that a program can have multiple references to the

same object; all references to an object must be dropped before the object is eligible for

garbage collection.

The Java runtime environment has a garbage collector that periodically frees the

memory used by objects that are no longer referenced. The garbage collector does its

job automatically when it determines that the time is right.

 - 82 -

More on Classes

This section covers more aspects of classes that depend on using object references and

the dot operator that you learned about in the preceding sections on objects:

 Returning values from methods.

 The this keyword.

 Class vs. instance members.

 Access control.

 - 83 -

Returning a Value from a Method

A method returns to the code that invoked it when it

 completes all the statements in the method,

 reaches a return statement, or

 throws an exception (covered later),

whichever occurs first.

You declare a method's return type in its method declaration. Within the body of the

method, you use the return statement to return the value.

Any method declared void doesn't return a value. It does not need to contain a return

statement, but it may do so. In such a case, a return statement can be used to branch

out of a control flow block and exit the method and is simply used like this:

 return;

If you try to return a value from a method that is declared void, you will get a compiler

error.

Any method that is not declared void must contain a return statement with a

corresponding return value, like this:

 return returnValue;

The data type of the return value must match the method's declared return type; you

can't return an integer value from a method declared to return a boolean.

The getArea() method in the Rectangle Rectangle class that was discussed in the

sections on objects returns an integer:

 // a method for computing the area of the rectangle

 public int getArea() {

 return width * height;

 }

This method returns the integer that the expression width*height evaluates to.

The area method returns a primitive type. A method can also return a reference type.

For example, in a program to manipulate Bicycle objects, we might have a method like

this:

public Bicycle seeWhosFastest(Bicycle myBike, Bicycle yourBike,

Environment env) {

 Bicycle fastest;

 // code to calculate which bike is faster, given

 // each bike's gear and cadence and given

 // the environment (terrain and wind)

 return fastest;

}

http://java.sun.com/docs/books/tutorial/java/javaOO/examples/Rectangle.java

 - 84 -

Returning a Class or Interface

If this section confuses you, skip it and return to it after you have finished the lesson on

interfaces and inheritance.

When a method uses a class name as its return type, such as whosFastest does, the

class of the type of the returned object must be either a subclass of, or the exact class of,

the return type. Suppose that you have a class hierarchy in which ImaginaryNumber is a

subclass of java.lang.Number, which is in turn a subclass of Object, as illustrated in

the following figure.

The class hierarchy for ImaginaryNumber

Now suppose that you have a method declared to return a Number:

public Number returnANumber() {

 ...

}

The returnANumber method can return an ImaginaryNumber but not an Object.

ImaginaryNumber is a Number because it's a subclass of Number. However, an Object

is not necessarily a Number — it could be a String or another type.

You can override a method and define it to return a subclass of the original method, like

this:

public ImaginaryNumber returnANumber() {

 ...

}

This technique, called covariant return type, means that the return type is allowed to

vary in the same direction as the subclass.

Note: You also can use interface names as return types. In this case, the object returned

must implement the specified interface.

 - 85 -

Using the this Keyword

Within an instance method or a constructor, this is a reference to the current object —

the object whose method or constructor is being called. You can refer to any member of

the current object from within an instance method or a constructor by using this.

Using this with a Field

The most common reason for using the this keyword is because a field is shadowed by

a method or constructor parameter.

For example, the Point class was written like this

public class Point {

 public int x = 0;

 public int y = 0;

 //constructor

 public Point(int a, int b) {

 x = a;

 y = b;

 }

}

but it could have been written like this:

public class Point {

 public int x = 0;

 public int y = 0;

 //constructor

 public Point(int x, int y) {

 this.x = x;

 this.y = y;

 }

}

Each argument to the second constructor shadows one of the object's fields—inside the

constructor x is a local copy of the constructor's first argument. To refer to the Point

field x, the constructor must use this.x.

Using this with a Constructor

From within a constructor, you can also use the this keyword to call another

constructor in the same class. Doing so is called an explicit constructor invocation.

Here's another Rectangle class, with a different implementation from the one in the

Objects section.

public class Rectangle {

 private int x, y;

 private int width, height;

 public Rectangle() {

 this(0, 0, 0, 0);

 }

http://java.sun.com/docs/books/tutorial/java/javaOO/objects.html

 - 86 -

 public Rectangle(int width, int height) {

 this(0, 0, width, height);

 }

 public Rectangle(int x, int y, int width, int height) {

 this.x = x;

 this.y = y;

 this.width = width;

 this.height = height;

 }

 ...

}

This class contains a set of constructors. Each constructor initializes some or all of the

rectangle's member variables. The constructors provide a default value for any member

variable whose initial value is not provided by an argument. For example, the no-

argument constructor calls the four-argument constructor with four 0 values and the

two-argument constructor calls the four-argument constructor with two 0 values. As

before, the compiler determines which constructor to call, based on the number and the

type of arguments.

If present, the invocation of another constructor must be the first line in the constructor.

 - 87 -

Controlling Access to Members of a Class

Access level modifiers determine whether other classes can use a particular field or

invoke a particular method. There are two levels of access control:

 At the top level—public, or package-private (no explicit modifier).

 At the member level—public, private, protected, or package-private (no

explicit modifier).

A class may be declared with the modifier public, in which case that class is visible to

all classes everywhere. If a class has no modifier (the default, also known as package-

private), it is visible only within its own package (packages are named groups of related

classes—you will learn about them in a later lesson.)

At the member level, you can also use the public modifier or no modifier (package-

private) just as with top-level classes, and with the same meaning. For members, there

are two additional access modifiers: private and protected. The private modifier

specifies that the member can only be accessed in its own class. The protected

modifier specifies that the member can only be accessed within its own package (as

with package-private) and, in addition, by a subclass of its class in another package.

The following table shows the access to members permitted by each modifier.

Access Levels

Modifier Class Package Subclass World

public Y Y Y Y

protected Y Y Y N

no modifier Y Y N N

private Y N N N

The first data column indicates whether the class itself has access to the member defined

by the access level. As you can see, a class always has access to its own members. The

second column indicates whether classes in the same package as the class (regardless of

their parentage) have access to the member. The third column indicates whether

subclasses of the class — declared outside this package — have access to the member.

The fourth column indicates whether all classes have access to the member.

Access levels affect you in two ways. First, when you use classes that come from

another source, such as the classes in the Java platform, access levels determine which

members of those classes your own classes can use. Second, when you write a class,

you need to decide what access level every member variable and every method in your

class should have.

Let's look at a collection of classes and see how access levels affect visibility. The

following figure shows the four classes in this example and how they are related.

 - 88 -

Classes and Packages of the Example Used to Illustrate
Access Levels

The following table shows where the members of the Alpha class are visible for each of

the access modifiers that can be applied to them.

Visibility

Modifier Alpha Beta Alphasub Gamma

public Y Y Y Y

protected Y Y Y N

no modifier Y Y N N

private Y N N N

Tips on Choosing an Access Level: If other programmers use your class, you want to

ensure that errors from misuse cannot happen. Access levels can help you do this.

 Use the most restrictive access level that makes sense for a particular member.

Use private unless you have a good reason not to.

 Avoid public fields except for constants. (Many of the examples in the tutorial

use public fields. This may help to illustrate some points concisely, but is not

recommended for production code.) Public fields tend to link you to a particular

implementation and limit your flexibility in changing your code.

 - 89 -

Understanding Instance and Class Members

In this section, we discuss the use of the static keyword to create fields and methods

that belong to the class, rather than to an instance of the class.

Class Variables

When a number of objects are created from the same class blueprint, they each have

their own distinct copies of instance variables. In the case of the Bicycle class, the

instance variables are cadence, gear, and speed. Each Bicycle object has its own

values for these variables, stored in different memory locations.

Sometimes, you want to have variables that are common to all objects. This is

accomplished with the static modifier. Fields that have the static modifier in their

declaration are called static fields or class variables. They are associated with the class,

rather than with any object. Every instance of the class shares a class variable, which is

in one fixed location in memory. Any object can change the value of a class variable,

but class variables can also be manipulated without creating an instance of the class.

Note: Public non-final statics are not recommended for applets because you can't make

any assumptions on how the browser will implement the Java Virtual Machine (JVM).

If your applet defines a public non-final static as a way of implementing a global

variable, that variable may be clobbered when subsequent applets are launched. If your

applet defines a public non-final static as a way of communicating between applets, you

may find that the applets do not share the same JVM and are unable to communicate.

For example, suppose you want to create a number of Bicycle objects and assign each

a serial number, beginning with 1 for the first object. This ID number is unique to each

object and is therefore an instance variable. At the same time, you need a field to keep

track of how many Bicycle objects have been created so that you know what ID to

assign to the next one. Such a field is not related to any individual object, but to the

class as a whole. For this you need a class variable, numberOfBicycles, as follows:

public class Bicycle{

 private int cadence;

 private int gear;

 private int speed;

 // add an instance variable for the object ID

 private int id;

 // add a class variable for the number of Bicycle objects

instantiated

 private static int numberOfBicycles = 0;

}

Class variables are referenced by the class name itself, as in

 Bicycle.numberOfBicycles

 - 90 -

This makes it clear that they are class variables.

Note: You can also refer to static fields with an object reference like
 myBike.numberOfBicycles

but this is discouraged because it does not make it clear that they are class variables.

You can use the Bicycle constructor to set the id instance variable and increment the

numberOfBicycles class variable:

public class Bicycle{

 private int cadence;

 private int gear;

 private int speed;

 private int id;

 private static int numberOfBicycles = 0;

 public Bicycle(int startCadence, int startSpeed, int startGear){

 gear = startGear;

 cadence = startCadence;

 speed = startSpeed;

 // increment number of Bicycles and assign ID number

 id = ++numberOfBicycles;

 }

 // new method to return the ID instance variable

 public int getID() {

 return id;

 }

}

Class Methods

The Java programming language supports static methods as well as static variables.

Static methods, which have the static modifier in their declarations, should be

invoked with the class name, without the need for creating an instance of the class, as in
ClassName.methodName(args)

Note: You can also refer to static methods with an object reference like
 instanceName.methodName(args)

but this is discouraged because it does not make it clear that they are class methods.

A common use for static methods is to access static fields. For example, we could add a

static method to the Bicycle class to access the numberOfBicycles static field:

public static int getNumberOfBicycles() {

 return numberOfBicycles;

}

 - 91 -

Not all combinations of instance and class variables and methods are allowed:

 Instance methods can access instance variables and instance methods directly.

 Instance methods can access class variables and class methods directly.

 Class methods can access class variables and class methods directly.

 Class methods cannot access instance variables or instance methods directly—

they must use an object reference. Also, class methods cannot use the this

keyword as there is no instance for this to refer to.

Constants

The static modifier, in combination with the final modifier, is also used to define

constants. The final modifier indicates that the value of this field cannot change.

For example, the following variable declaration defines a constant named PI, whose

value is an approximation of pi (the ratio of the circumference of a circle to its

diameter):

static final double PI = 3.141592653589793;

Constants defined in this way cannot be reassigned, and it is a compile-time error if

your program tries to do so. By convention, the names of constant values are spelled in

uppercase letters. If the name is composed of more than one word, the words are

separated by an underscore (_).

Note: If a primitive type or a string is defined as a constant and the value is known at

compile time, the compiler replaces the constant name everywhere in the code with its

value. This is called a compile-time constant. If the value of the constant in the outside

world changes (for example, if it is legislated that pi actually should be 3.975), you will

need to recompile any classes that use this constant to get the current value.

The Bicycle Class

After all the modifications made in this section, the Bicycle class is now:
public class Bicycle{

 private int cadence;

 private int gear;

 private int speed;

 private int id;

 private static int numberOfBicycles = 0;

 public Bicycle(int startCadence, int startSpeed, int startGear){

 gear = startGear;

 cadence = startCadence;

 speed = startSpeed;

 id = ++numberOfBicycles;

 }

 - 92 -

 public int getID() {

 return id;

 }

 public static int getNumberOfBicycles() {

 return numberOfBicycles;

 }

 public int getCadence(){

 return cadence;

 }

 public void setCadence(int newValue){

 cadence = newValue;

 }

 public int getGear(){

 return gear;

 }

 public void setGear(int newValue){

 gear = newValue;

 }

 public int getSpeed(){

 return speed;

 }

 public void applyBrake(int decrement){

 speed -= decrement;

 }

 public void speedUp(int increment){

 speed += increment;

 }

}

 - 93 -

Initializing Fields

As you have seen, you can often provide an initial value for a field in its declaration:
public class BedAndBreakfast {

 public static int capacity = 10; //initialize to 10

 private boolean full = false; //initialize to false

}

This works well when the initialization value is available and the initialization can be

put on one line. However, this form of initialization has limitations because of its

simplicity. If initialization requires some logic (for example, error handling or a for

loop to fill a complex array), simple assignment is inadequate. Instance variables can be

initialized in constructors, where error handling or other logic can be used. To provide

the same capability for class variables, the Java programming language includes static

initialization blocks.

Note: It is not necessary to declare fields at the beginning of the class definition,

although this is the most common practice. It is only necessary that they be declared and

initialized before they are used.

Static Initialization Blocks

A static initialization block is a normal block of code enclosed in braces, { }, and

preceded by the static keyword. Here is an example:

static {

 // whatever code is needed for initialization goes here

}

A class can have any number of static initialization blocks, and they can appear

anywhere in the class body. The runtime system guarantees that static initialization

blocks are called in the order that they appear in the source code.

There is an alternative to static blocks —you can write a private static method:

class Whatever {

 public static varType myVar = initializeClassVariable();

 private static varType initializeClassVariable() {

 //initialization code goes here

 }

}

The advantage of private static methods is that they can be reused later if you need to

reinitialize the class variable.

 - 94 -

Initializing Instance Members

Normally, you would put code to initialize an instance variable in a constructor. There

are two alternatives to using a constructor to initialize instance variables: initializer

blocks and final methods.

Initializer blocks for instance variables look just like static initializer blocks, but without

the static keyword:

{

 // whatever code is needed for initialization goes here

}

The Java compiler copies initializer blocks into every constructor. Therefore, this

approach can be used to share a block of code between multiple constructors.

A final method cannot be overridden in a subclass. This is discussed in the lesson on

interfaces and inheritance. Here is an example of using a final method for initializing an

instance variable:

class Whatever {

 private varType myVar = initializeInstanceVariable();

 protected final varType initializeInstanceVariable() {

 //initialization code goes here

 }

}

This is especially useful if subclasses might want to reuse the initialization method. The

method is final because calling non-final methods during instance initialization can

cause problems. Joshua Bloch describes this in more detail in Effective Java.

http://java.sun.com/docs/books/effective

 - 95 -

Summary of Creating and Using Classes and Objects

A class declaration names the class and encloses the class body between braces. The

class name can be preceded by modifiers. The class body contains fields, methods, and

constructors for the class. A class uses fields to contain state information and uses

methods to implement behavior. Constructors that initialize a new instance of a class

use the name of the class and look like methods without a return type.

You control access to classes and members in the same way: by using an access

modifier such as public in their declaration.

You specify a class variable or a class method by using the static keyword in the

member's declaration. A member that is not declared as static is implicitly an instance

member. Class variables are shared by all instances of a class and can be accessed

through the class name as well as an instance reference. Instances of a class get their

own copy of each instance variable, which must be accessed through an instance

reference.

You create an object from a class by using the new operator and a constructor. The new

operator returns a reference to the object that was created. You can assign the reference

to a variable or use it directly.

Instance variables and methods that are accessible to code outside of the class that they

are declared in can be referred to by using a qualified name. The qualified name of an

instance variable looks like this:

objectReference.variableName

The qualified name of a method looks like this:

objectReference.methodName(argumentList)

 or

objectReference.methodName()

The garbage collector automatically cleans up unused objects. An object is unused if the

program holds no more references to it. You can explicitly drop a reference by setting

the variable holding the reference to null.

 - 96 -

Questions and Exercises: Classes

Questions

1. Consider the following class:
public class IdentifyMyParts {

 public static int x = 7;

 public int y = 3;

}

a. What are the class variables?

b. What are the instance variables?

c. What is the output from the following code:

IdentifyMyParts a = new IdentifyMyParts();

IdentifyMyParts b = new IdentifyMyParts();

a.y = 5;

b.y = 6;

a.x = 1;

b.x = 2;

System.out.println("a.y = " + a.y);

System.out.println("b.y = " + b.y);

System.out.println("a.x = " + a.x);

System.out.println("b.x = " + b.x);

System.out.println("IdentifyMyParts.x = " + IdentifyMyParts.x);

Exercises

1. Write a class whose instances represent a single playing card from a deck of cards.

Playing cards have two distinguishing properties: rank and suit. Be sure to keep your

solution as you will be asked to rewrite it in Enum Types.

Hint: You can use the assert statement to check your assignments. You write:
assert (boolean expression to test);

If the boolean expression is false, you will get an error message. For example,
assert toString(ACE) == "Ace";

should return true, so there will be no error message.

If you use the assert statement, you must run your program with the ea flag:

java -ea YourProgram.class

2. Write a class whose instances represent a full deck of cards. You should also keep

this solution.

3. Write a small program to test your deck and card classes. The program can be as

simple as creating a deck of cards and displaying its cards.

http://java.sun.com/docs/books/tutorial/java/javaOO/QandE/enum-questions.html

 - 97 -

Questions and Exercises: Objects

Questions

1. What's wrong with the following program?

public class SomethingIsWrong {

public static void main(String[] args) {

Rectangle myRect;

myRect.width = 40;

myRect.height = 50;

System.out.println("myRect's area is " + myRect.area());

}

}

2. The following code creates one array and one string object. How
many references to those objects exist after the code executes?

Is either object eligible for garbage collection?

...

String[] students = new String[10];

String studentName = "Peter Parker";

students[0] = studentName;

studentName = null;

...

3. How does a program destroy an object that it creates?

Exercises

1. Fix the program called SomethingIsWrong shown in Question 1.

2. Given the following class, called NumberHolder, write some code that creates an

instance of the class, initializes its two member variables, and then displays the

value of each member variable.

public class NumberHolder {

 public int anInt;

 public float aFloat;

}

http://java.sun.com/docs/books/tutorial/java/javaOO/QandE/NumberHolder.java

 - 98 -

Nested Classes

The Java programming language allows you to define a class within another class. Such

a class is called a nested class and is illustrated here:
class OuterClass {

 ...

 class NestedClass {

 ...

 }

}

Terminology: Nested classes are divided into two categories: static and non-static.

Nested classes that are declared static are simply called static nested classes. Non-

static nested classes are called inner classes.

class OuterClass {

 ...

 static class StaticNestedClass {

 ...

 }

 class InnerClass {

 ...

 }

}

A nested class is a member of its enclosing class. Non-static nested classes (inner

classes) have access to other members of the enclosing class, even if they are declared

private. Static nested classes do not have access to other members of the enclosing

class. As a member of the OuterClass, a nested class can be declared private,

public, protected, or package private. (Recall that outer classes can only be declared

public or package private.)

Why Use Nested Classes?

There are several compelling reasons for using nested classes, among them:

 It is a way of logically grouping classes that are only used in one place.

 It increases encapsulation.

 Nested classes can lead to more readable and maintainable code.

Logical grouping of classes—If a class is useful to only one other class, then it is

logical to embed it in that class and keep the two together. Nesting such "helper classes"

makes their package more streamlined.

Increased encapsulation—Consider two top-level classes, A and B, where B needs

access to members of A that would otherwise be declared private. By hiding class B

within class A, A's members can be declared private and B can access them. In addition,

B itself can be hidden from the outside world.

More readable, maintainable code—Nesting small classes within top-level classes

places the code closer to where it is used.

 - 99 -

Static Nested Classes

As with class methods and variables, a static nested class is associated with its outer

class. And like static class methods, a static nested class cannot refer directly to instance

variables or methods defined in its enclosing class — it can use them only through an

object reference.

Note: A static nested class interacts with the instance members of its outer class (and

other classes) just like any other top-level class. In effect, a static nested class is

behaviorally a top-level class that has been nested in another top-level class for

packaging convenience.

Static nested classes are accessed using the enclosing class name:

OuterClass.StaticNestedClass

For example, to create an object for the static nested class, use this syntax:

OuterClass.StaticNestedClass nestedObject = new

OuterClass.StaticNestedClass();

Inner Classes

As with instance methods and variables, an inner class is associated with an instance of

its enclosing class and has direct access to that object's methods and fields. Also,

because an inner class is associated with an instance, it cannot define any static

members itself.

Objects that are instances of an inner class exist within an instance of the outer class.

Consider the following classes:

class OuterClass {

 ...

 class InnerClass {

 ...

 }

}

An instance of InnerClass can exist only within an instance of OuterClass and has

direct access to the methods and fields of its enclosing instance. The next figure

illustrates this idea.

An InnerClass Exists Within an Instance of OuterClass

 - 100 -

To instantiate an inner class, you must first instantiate the outer class. Then, create the

inner object within the outer object with this syntax:

OuterClass.InnerClass innerObject = outerObject.new InnerClass();

Additionally, there are two special kinds of inner classes: local classes and anonymous

classes (also called anonymous inner classes). Both of these will be discussed briefly in

the next section.

Note: If you want more information on the taxonomy of the different kinds of classes in

the Java programming language (which can be tricky to describe concisely, clearly, and

correctly), you might want to read Joseph Darcy's blog: Nested, Inner, Member and

Top-Level Classes.

http://blogs.sun.com/darcy/entry/nested_inner_member_and_top
http://blogs.sun.com/darcy/entry/nested_inner_member_and_top

 - 101 -

Inner Class Example

To see an inner class in use, let's first consider an array. In the following example, we

will create an array, fill it with integer values and then output only values of even

indices of the array in ascending order.

The DataStructure class below consists of:

 The DataStructure outer class, which includes methods to add an integer onto

the array and print out values of even indices of the array.

 The InnerEvenIterator inner class, which is similar to a standard Java

iterator. Iterators are used to step through a data structure and typically have

methods to test for the last element, retrieve the current element, and move to the

next element.

 A main method that instantiates a DataStructure object (ds) and uses it to fill

the arrayOfInts array with integer values (0, 1, 2, 3, etc.), then calls a

printEven method to print out values of even indices of arrayOfInts.

public class DataStructure {

 //create an array

 private final static int SIZE = 15;

 private int[] arrayOfInts = new int[SIZE];

 public DataStructure() {

 //fill the array with ascending integer values

 for (int i = 0; i < SIZE; i++) {

 arrayOfInts[i] = i;

 }

 }

 public void printEven() {

 //print out values of even indices of the array

 InnerEvenIterator iterator = this.new InnerEvenIterator();

 while (iterator.hasNext()) {

 System.out.println(iterator.getNext() + " ");

 }

 }

//inner class implements the Iterator pattern

 private class InnerEvenIterator {

 //start stepping through the array from the beginning

 private int next = 0;

 public boolean hasNext() {

 //check if a current element is the last in the array

 return (next <= SIZE - 1);

 }

 public int getNext() {

 //record a value of an even index of the array

 int retValue = arrayOfInts[next];

 //get the next even element

 next += 2;

 return retValue;

 }

 }

 - 102 -

 public static void main(String s[]) {

 //fill the array with integer values and print out only values

of even indices

 DataStructure ds = new DataStructure();

 ds.printEven();

 }

}

The output is:

0 2 4 6 8 10 12 14

Note that the InnerEvenIterator class refers directly to the arrayOfInts instance

variable of the DataStructure object.

Inner classes can be used to implement helper classes like the one shown in the example

above. If you plan on handling user-interface events, you will need to know how to use

inner classes because the event-handling mechanism makes extensive use of them.

Local and Anonymous Inner Classes

There are two additional types of inner classes. You can declare an inner class within

the body of a method. Such a class is known as a local inner class. You can also declare

an inner class within the body of a method without naming it. These classes are known

as anonymous inner classes. You will encounter such classes in advanced Java

programming.

Modifiers

You can use the same modifiers for inner classes that you use for other members of the

outer class. For example, you can use the access specifiers — private, public, and

protected — to restrict access to inner classes, just as you do to other class members.

 - 103 -

Summary of Nested Classes

A class defined within another class is called a nested class. Like other members of a

class, a nested class can be declared static or not. A nonstatic nested class is called an

inner class. An instance of an inner class can exist only within an instance of its

enclosing class and has access to its enclosing class's members even if they are declared

private.

The following table shows the types of nested classes:

Types of Nested Classes

Type Scope Inner

static nested class member no

inner [non-static] class member yes

local class local yes

anonymous class only the point where it is defined yes

 - 104 -

Questions and Exercises: Nested Classes

Questions

1. The program Problem.java doesn't compile. What do you need to do to make it

compile? Why?

2. Use the Java API documentation for the Box class (in the javax.swing package) to

help you answer the following questions.

a. What static nested class does Box define?

b. What inner class does Box define?

c. What is the superclass of Box’s inner class?

d. Which of Box’s nested classes can you use from any class?

e. How do you create an instance of Box’s Filler class?

Exercises

1. Get the file Class1.java.

Compile and run Class1. What is the output?

http://java.sun.com/docs/books/tutorial/java/javaOO/QandE/Problem.java
http://java.sun.com/javase/6/docs/api/javax/swing/Box.html
http://java.sun.com/docs/books/tutorial/java/javaOO/QandE/Class1.java

 - 105 -

Enum Types

An enum type is a type whose fields consist of a fixed set of constants. Common

examples include compass directions (values of NORTH, SOUTH, EAST, and WEST)

and the days of the week.

Because they are constants, the names of an enum type's fields are in uppercase letters.

In the Java programming language, you define an enum type by using the enum

keyword. For example, you would specify a days-of-the-week enum type as:

public enum Day {

 SUNDAY, MONDAY, TUESDAY, WEDNESDAY,

 THURSDAY, FRIDAY, SATURDAY

}

You should use enum types any time you need to represent a fixed set of constants. That

includes natural enum types such as the planets in our solar system and data sets where

you know all possible values at compile time—for example, the choices on a menu,

command line flags, and so on.

Here is some code that shows you how to use the Day enum defined above:

public class EnumTest {

 Day day;

 public EnumTest(Day day) {

 this.day = day;

 }

 public void tellItLikeItIs() {

 switch (day) {

 case MONDAY: System.out.println("Mondays are

bad.");

 break;

 case FRIDAY: System.out.println("Fridays are

better.");

 break;

 case SATURDAY:

 case SUNDAY: System.out.println("Weekends are

best.");

 break;

 default: System.out.println("Midweek

days are so-so.");

 break;

 }

 }

 public static void main(String[] args) {

 EnumTest firstDay = new EnumTest(Day.MONDAY);

 firstDay.tellItLikeItIs();

 EnumTest thirdDay = new EnumTest(Day.WEDNESDAY);

 thirdDay.tellItLikeItIs();

 - 106 -

 EnumTest fifthDay = new EnumTest(Day.FRIDAY);

 fifthDay.tellItLikeItIs();

 EnumTest sixthDay = new EnumTest(Day.SATURDAY);

 sixthDay.tellItLikeItIs();

 EnumTest seventhDay = new EnumTest(Day.SUNDAY);

 seventhDay.tellItLikeItIs();

 }

}

The output is:

Mondays are bad.

Midweek days are so-so.

Fridays are better.

Weekends are best.

Weekends are best.

Java programming language enum types are much more powerful than their

counterparts in other languages. The enum declaration defines a class (called an enum

type). The enum class body can include methods and other fields. The compiler

automatically adds some special methods when it creates an enum. For example, they

have a static values method that returns an array containing all of the values of the

enum in the order they are declared. This method is commonly used in combination

with the for-each construct to iterate over the values of an enum type. For example, this

code from the Planet class example below iterates over all the planets in the solar

system.

for (Planet p : Planet.values()) {

 System.out.printf("Your weight on %s is %f%n",

 p, p.surfaceWeight(mass));

}

Note: All enums implicitly extend java.lang.Enum. Since Java does not support

multiple inheritance, an enum cannot extend anything else.

In the following example, Planet is an enum type that represents the planets in the

solar system. They are defined with constant mass and radius properties.

Each enum constant is declared with values for the mass and radius parameters. These

values are passed to the constructor when the constant is created. Java requires that the

constants be defined first, prior to any fields or methods. Also, when there are fields and

methods, the list of enum constants must end with a semicolon.

Note: The constructor for an enum type must be package-private or private access. It

automatically creates the constants that are defined at the beginning of the enum body.

You cannot invoke an enum constructor yourself.

 - 107 -

In addition to its properties and constructor, Planet has methods that allow you to

retrieve the surface gravity and weight of an object on each planet. Here is a sample

program that takes your weight on earth (in any unit) and calculates and prints your

weight on all of the planets (in the same unit):

public enum Planet {

 MERCURY (3.303e+23, 2.4397e6),

 VENUS (4.869e+24, 6.0518e6),

 EARTH (5.976e+24, 6.37814e6),

 MARS (6.421e+23, 3.3972e6),

 JUPITER (1.9e+27, 7.1492e7),

 SATURN (5.688e+26, 6.0268e7),

 URANUS (8.686e+25, 2.5559e7),

 NEPTUNE (1.024e+26, 2.4746e7);

 private final double mass; // in kilograms

 private final double radius; // in meters

 Planet(double mass, double radius) {

 this.mass = mass;

 this.radius = radius;

 }

 private double mass() { return mass; }

 private double radius() { return radius; }

 // universal gravitational constant (m3 kg-1 s-2)

 public static final double G = 6.67300E-11;

 double surfaceGravity() {

 return G * mass / (radius * radius);

 }

 double surfaceWeight(double otherMass) {

 return otherMass * surfaceGravity();

 }

 public static void main(String[] args) {

 double earthWeight = Double.parseDouble(args[0]);

 double mass = earthWeight/EARTH.surfaceGravity();

 for (Planet p : Planet.values())

 System.out.printf("Your weight on %s is %f%n",

 p, p.surfaceWeight(mass));

 }

}

If you run Planet.class from the command line with an argument of 175, you get this

output:

$ java Planet 175

Your weight on MERCURY is 66.107583

Your weight on VENUS is 158.374842

Your weight on EARTH is 175.000000

Your weight on MARS is 66.279007

Your weight on JUPITER is 442.847567

Your weight on SATURN is 186.552719

Your weight on URANUS is 158.397260

Your weight on NEPTUNE is 199.207413

 - 108 -

Questions and Exercises: Enum Types

Exercises

1. Rewrite the class Card from the exercise in Questions and Exercises: Classes so

that it represents the rank and suit of a card with enum types.

2. Rewrite the Deck class.

http://java.sun.com/docs/books/tutorial/java/javaOO/QandE/creating-questions.html

 - 109 -

Annotations

Annotations provide data about a program that is not part of the program itself. They

have no direct effect on the operation of the code they annotate.

Annotations have a number of uses, among them:

 Information for the compiler — Annotations can be used by the compiler to

detect errors or suppress warnings.

 Compiler-time and deployment-time processing — Software tools can

process annotation information to generate code, XML files, and so forth.

 Runtime processing — Some annotations are available to be examined at

runtime.

Annotations can be applied to a program's declarations of classes, fields, methods, and

other program elements.

The annotation appears first, often (by convention) on its own line, and may include

elements with named or unnamed values:

@Author(

 name = "Benjamin Franklin",

 date = "3/27/2003"

)

class MyClass() { }

or
@SuppressWarnings(value = "unchecked")

void myMethod() { }

If there is just one element named "value," then the name may be omitted, as in:

@SuppressWarnings("unchecked")

void myMethod() { }

Also, if an annotation has no elements, the parentheses may be omitted, as in:
@Override

void mySuperMethod() { }

Documentation

Many annotations replace what would otherwise have been comments in code.

Suppose that a software group has traditionally begun the body of every class with

comments providing important information:

public class Generation3List extends Generation2List {

 // Author: John Doe

 // Date: 3/17/2002

 // Current revision: 6

 // Last modified: 4/12/2004

 // By: Jane Doe

 - 110 -

 // Reviewers: Alice, Bill, Cindy

 // class code goes here

}

To add this same metadata with an annotation, you must first define the annotation type.

The syntax for doing this is:

@interface ClassPreamble {

 String author();

 String date();

 int currentRevision() default 1;

 String lastModified() default "N/A";

 String lastModifiedBy() default "N/A";

 String[] reviewers(); // Note use of array

}

The annotation type definition looks somewhat like an interface definition where the

keyword interface is preceded by the @ character (@ = "AT" as in Annotation Type).

Annotation types are, in fact, a form of interface, which will be covered in a later

lesson. For the moment, you do not need to understand interfaces.

The body of the annotation definition above contains annotation type element

declarations, which look a lot like methods. Note that they may define optional default

values.

Once the annotation type has been defined, you can use annotations of that type, with

the values filled in, like this:

@ClassPreamble (

 author = "John Doe",

 date = "3/17/2002",

 currentRevision = 6,

 lastModified = "4/12/2004",

 lastModifiedBy = "Jane Doe"

 reviewers = {"Alice", "Bob", "Cindy"} // Note array notation

)

public class Generation3List extends Generation2List {

// class code goes here

}

Note: To make the information in @ClassPreamble appear in Javadoc-generated

documentation, you must annotate the @ClassPreamble definition itself with the

@Documented annotation:
import java.lang.annotation.*; // import this to use @Documented

@Documented

@interface ClassPreamble {

 // Annotation element definitions

}

 - 111 -

Annotations Used by the Compiler

There are three annotation types that are predefined by the language specification itself:

@Deprecated, @Override, and @SuppressWarnings.

@Deprecated—the @Deprecated annotation indicates that the marked element is

deprecated and should no longer be used. The compiler generates a warning whenever a

program uses a method, class, or field with the @Deprecated annotation. When an

element is deprecated, it should also be documented using the Javadoc @deprecated

tag, as shown in the following example. The use of the "@" symbol in both Javadoc

comments and in annotations is not coincidental—they are related conceptually. Also,

note that the Javadoc tag starts with a lowercase "d" and the annotation starts with an

uppercase "D".

 // Javadoc comment follows

 /**

 * @deprecated

 * explanation of why it was deprecated

 */

 @Deprecated

 static void deprecatedMethod() { }

}

@Override—the @Override annotation informs the compiler that the element is meant

to override an element declared in a superclass (overriding methods will be discussed in

the the lesson titled "Interfaces and Inheritance").

 // mark method as a superclass method

 // that has been overridden

 @Override

 int overriddenMethod() { }

While it's not required to use this annotation when overriding a method, it helps to

prevent errors. If a method marked with @Override fails to correctly override a method

in one of its superclasses, the compiler generates an error.

@SuppressWarnings—the @SuppressWarnings annotation tells the compiler to

suppress specific warnings that it would otherwise generate. In the example below, a

deprecated method is used and the compiler would normally generate a warning. In this

case, however, the annotation causes the warning to be suppressed.

 // use a deprecated method and tell

 // compiler not to generate a warning

 @SuppressWarnings("deprecation")

 void useDeprecatedMethod() {

 objectOne.deprecatedMethod(); //deprecation warning -

suppressed

 }

Every compiler warning belongs to a category. The Java Language Specification lists

two categories: "deprecation" and "unchecked." The "unchecked" warning can occur

when interfacing with legacy code written before the advent of generics (discussed in

http://java.sun.com/javase/6/docs/api/java/lang/Deprecated.html
http://java.sun.com/javase/6/docs/api/java/lang/Override.html
http://java.sun.com/javase/6/docs/api/java/lang/SuppressWarnings.html

 - 112 -

the lesson titled "Generics"). To suppress more than one category of warnings, use the

following syntax:

@SuppressWarnings({"unchecked", "deprecation"})

 - 113 -

Annotation Processing

The more advanced uses of annotations include writing an annotation processor that

can read a Java program and take actions based on its annotations. It might, for

example, generate auxiliary source code, relieving the programmer of having to create

boilerplate code that always follows predictable patterns. To facilitate this task, release

5.0 of the JDK includes an annotation processing tool, called apt. In release 6 of the

JDK, the functionality of apt is a standard part of the Java compiler.

To make annotation information available at runtime, the annotation type itself must be

annotated with @Retention(RetentionPolicy.RUNTIME), as follows:

import java.lang.annotation.*;

@Retention(RetentionPolicy.RUNTIME)

@interface AnnotationForRuntime {

 // Elements that give information

 // for runtime processing

}

 - 114 -

Questions and Exercises: Annotations

Questions

1. What is wrong with the following interface?
public interface House {

 @Deprecated

 void open();

 void openFrontDoor();

 void openBackDoor();

}

2. Compile this program:
interface Closable {

 void close();

}

class File implements Closable {

 @Override

 public void close() {

 //... close this file...

 }

}

What happens? Can you explain why?

3. Consider this implementation of the House interface, shown in Question 1.

public class MyHouse implements House {

 public void open() {}

 public void openFrontDoor() {}

 public void openBackDoor() {}

}

If you compile this program, the compiler complains that open has been deprecated (in

the interface). What can you do to get rid of that warning?

 - 115 -

Lesson: Interfaces and Inheritance

Interfaces

You saw an example of implementing an interface in the previous lesson. You can read

more about interfaces here—what they are for, why you might want to write one, and

how to write one.

Inheritance

This section describes the way in which you can derive one class from another. That is,

how a subclass can inherit fields and methods from a superclass. You will learn that all

classes are derived from the Object class, and how to modify the methods that a

subclass inherits from superclasses. This section also covers interface-like abstract

classes.

http://java.sun.com/docs/books/tutorial/java/IandI/createinterface.html
http://java.sun.com/docs/books/tutorial/java/IandI/subclasses.html

 - 116 -

Interfaces

There are a number of situations in software engineering when it is important for

disparate groups of programmers to agree to a "contract" that spells out how their

software interacts. Each group should be able to write their code without any knowledge

of how the other group's code is written. Generally speaking, interfaces are such

contracts.

For example, imagine a futuristic society where computer-controlled robotic cars

transport passengers through city streets without a human operator. Automobile

manufacturers write software (Java, of course) that operates the automobile—stop, start,

accelerate, turn left, and so forth. Another industrial group, electronic guidance

instrument manufacturers, make computer systems that receive GPS (Global

Positioning Satellite) position data and wireless transmission of traffic conditions and

use that information to drive the car.

The auto manufacturers must publish an industry-standard interface that spells out in

detail what methods can be invoked to make the car move (any car, from any

manufacturer). The guidance manufacturers can then write software that invokes the

methods described in the interface to command the car. Neither industrial group needs

to know how the other group's software is implemented. In fact, each group considers its

software highly proprietary and reserves the right to modify it at any time, as long as it

continues to adhere to the published interface.

Interfaces in Java

In the Java programming language, an interface is a reference type, similar to a class,

that can contain only constants, method signatures, and nested types. There are no

method bodies. Interfaces cannot be instantiated—they can only be implemented by

classes or extended by other interfaces. Extension is discussed later in this lesson.

Defining an interface is similar to creating a new class:

public interface OperateCar {

 // constant declarations, if any

 // method signatures

 int turn(Direction direction, // An enum with values RIGHT, LEFT

 double radius, double startSpeed, double endSpeed);

 int changeLanes(Direction direction, double startSpeed, double

endSpeed);

 int signalTurn(Direction direction, boolean signalOn);

 int getRadarFront(double distanceToCar, double speedOfCar);

 int getRadarRear(double distanceToCar, double speedOfCar);

 // more method signatures

}

Note that the method signatures have no braces and are terminated with a semicolon.

 - 117 -

To use an interface, you write a class that implements the interface. When an

instantiable class implements an interface, it provides a method body for each of the

methods declared in the interface. For example,

public class OperateBMW760i implements OperateCar {

 // the OperateCar method signatures, with implementation --

 // for example:

 int signalTurn(Direction direction, boolean signalOn) {

 //code to turn BMW's LEFT turn indicator lights on

 //code to turn BMW's LEFT turn indicator lights off

 //code to turn BMW's RIGHT turn indicator lights on

 //code to turn BMW's RIGHT turn indicator lights off

 }

 // other members, as needed -- for example, helper classes

 // not visible to clients of the interface

}

In the robotic car example above, it is the automobile manufacturers who will

implement the interface. Chevrolet's implementation will be substantially different from

that of Toyota, of course, but both manufacturers will adhere to the same interface. The

guidance manufacturers, who are the clients of the interface, will build systems that use

GPS data on a car's location, digital street maps, and traffic data to drive the car. In so

doing, the guidance systems will invoke the interface methods: turn, change lanes,

brake, accelerate, and so forth.

Interfaces as APIs

The robotic car example shows an interface being used as an industry standard

Application Programming Interface (API). APIs are also common in commercial

software products. Typically, a company sells a software package that contains complex

methods that another company wants to use in its own software product. An example

would be a package of digital image processing methods that are sold to companies

making end-user graphics programs. The image processing company writes its classes

to implement an interface, which it makes public to its customers. The graphics

company then invokes the image processing methods using the signatures and return

types defined in the interface. While the image processing company's API is made

public (to its customers), its implementation of the API is kept as a closely guarded

secret—in fact, it may revise the implementation at a later date as long as it continues to

implement the original interface that its customers have relied on.

Interfaces and Multiple Inheritance

Interfaces have another very important role in the Java programming language.

Interfaces are not part of the class hierarchy, although they work in combination with

classes. The Java programming language does not permit multiple inheritance

(inheritance is discussed later in this lesson), but interfaces provide an alternative.

In Java, a class can inherit from only one class but it can implement more than one

interface. Therefore, objects can have multiple types: the type of their own class and the

types of all the interfaces that they implement. This means that if a variable is declared

 - 118 -

to be the type of an interface, its value can reference any object that is instantiated from

any class that implements the interface. This is discussed later in this lesson, in the

section titled "Using an Interface as a Type."

 - 119 -

Defining an Interface

An interface declaration consists of modifiers, the keyword interface, the interface

name, a comma-separated list of parent interfaces (if any), and the interface body. For

example:

public interface GroupedInterface extends Interface1,

 Interface2, Interface3 {

 // constant declarations

 double E = 2.718282; // base of natural logarithms

 // method signatures

 void doSomething (int i, double x);

 int doSomethingElse(String s);

}

The public access specifier indicates that the interface can be used by any class in any

package. If you do not specify that the interface is public, your interface will be

accessible only to classes defined in the same package as the interface.

An interface can extend other interfaces, just as a class can extend or subclass another

class. However, whereas a class can extend only one other class, an interface can extend

any number of interfaces. The interface declaration includes a comma-separated list of

all the interfaces that it extends.

The Interface Body

The interface body contains method declarations for all the methods included in the

interface. A method declaration within an interface is followed by a semicolon, but no

braces, because an interface does not provide implementations for the methods declared

within it. All methods declared in an interface are implicitly public, so the public

modifier can be omitted.

An interface can contain constant declarations in addition to method declarations. All

constant values defined in an interface are implicitly public, static, and final. Once

again, these modifiers can be omitted.

 - 120 -

Implementing an Interface

To declare a class that implements an interface, you include an implements clause in

the class declaration. Your class can implement more than one interface, so the

implements keyword is followed by a comma-separated list of the interfaces

implemented by the class.

By convention, the implements clause follows the extends clause, if there is one.

A Sample Interface, Relatable

Consider an interface that defines how to compare the size of objects.

public interface Relatable {

 // this (object calling isLargerThan) and

 // other must be instances of the same class

 // returns 1, 0, -1 if this is greater

 // than, equal to, or less than other

 public int isLargerThan(Relatable other);

}

If you want to be able to compare the size of similar objects, no matter what they are,

the class that instantiates them should implement Relatable.

Any class can implement Relatable if there is some way to compare the relative "size"

of objects instantiated from the class. For strings, it could be number of characters; for

books, it could be number of pages; for students, it could be weight; and so forth. For

planar geometric objects, area would be a good choice (see the RectanglePlus class

that follows), while volume would work for three-dimensional geometric objects. All

such classes can implement the isLargerThan() method.

If you know that a class implements Relatable, then you know that you can compare

the size of the objects instantiated from that class.

Implementing the Relatable Interface

Here is the Rectangle class that was presented in the Creating Objects section,

rewritten to implement Relatable.

public class RectanglePlus implements Relatable {

 public int width = 0;

 public int height = 0;

 public Point origin;

 // four constructors

 public RectanglePlus() {

 origin = new Point(0, 0);

 }

 public RectanglePlus(Point p) {

 origin = p;

 }

 public RectanglePlus(int w, int h) {

 origin = new Point(0, 0);

http://java.sun.com/docs/books/tutorial/java/javaOO/objectcreation.html

 - 121 -

 width = w;

 height = h;

 }

 public RectanglePlus(Point p, int w, int h) {

 origin = p;

 width = w;

 height = h;

 }

 // a method for moving the rectangle

 public void move(int x, int y) {

 origin.x = x;

 origin.y = y;

 }

 // a method for computing the area of the rectangle

 public int getArea() {

 return width * height;

 }

 // a method to implement Relatable

 public int isLargerThan(Relatable other) {

 RectanglePlus otherRect = (RectanglePlus)other;

 if (this.getArea() < otherRect.getArea())

 return -1;

 else if (this.getArea() > otherRect.getArea())

 return 1;

 else

 return 0;

 }

}

Because RectanglePlus implements Relatable, the size of any two RectanglePlus

objects can be compared.

 - 122 -

Using an Interface as a Type

When you define a new interface, you are defining a new reference data type. You can

use interface names anywhere you can use any other data type name. If you define a

reference variable whose type is an interface, any object you assign to it must be an

instance of a class that implements the interface.

As an example, here is a method for finding the largest object in a pair of objects, for

any objects that are instantiated from a class that implements Relatable:

public Object findLargest(Object object1, Object object2) {

 Relatable obj1 = (Relatable)object1;

 Relatable obj2 = (Relatable)object2;

 if ((obj1).isLargerThan(obj2) > 0)

 return object1;

 else

 return object2;

}

By casting object1 to a Relatable type, it can invoke the isLargerThan method.

If you make a point of implementing Relatable in a wide variety of classes, the objects

instantiated from any of those classes can be compared with the findLargest()

method—provided that both objects are of the same class. Similarly, they can all be

compared with the following methods:

public Object findSmallest(Object object1, Object object2) {

 Relatable obj1 = (Relatable)object1;

 Relatable obj2 = (Relatable)object2;

 if ((obj1).isLargerThan(obj2) < 0)

 return object1;

 else

 return object2;

}

public boolean isEqual(Object object1, Object object2) {

 Relatable obj1 = (Relatable)object1;

 Relatable obj2 = (Relatable)object2;

 if ((obj1).isLargerThan(obj2) == 0)

 return true;

 else

 return false;

}

These methods work for any "relatable" objects, no matter what their class inheritance

is. When they implement Relatable, they can be of both their own class (or superclass)

type and a Relatable type. This gives them some of the advantages of multiple

inheritance, where they can have behavior from both a superclass and an interface.

 - 123 -

Rewriting Interfaces

Consider an interface that you have developed called DoIt:

public interface DoIt {

 void doSomething(int i, double x);

 int doSomethingElse(String s);

}

Suppose that, at a later time, you want to add a third method to DoIt, so that the

interface now becomes:

public interface DoIt {

 void doSomething(int i, double x);

 int doSomethingElse(String s);

 boolean didItWork(int i, double x, String s);

}

If you make this change, all classes that implement the old DoIt interface will break

because they don't implement the interface anymore. Programmers relying on this

interface will protest loudly.

Try to anticipate all uses for your interface and to specify it completely from the

beginning. Given that this is often impossible, you may need to create more interfaces

later. For example, you could create a DoItPlus interface that extends DoIt:

public interface DoItPlus extends DoIt {

 boolean didItWork(int i, double x, String s);

}

Now users of your code can choose to continue to use the old interface or to upgrade to

the new interface.

 - 124 -

Summary of Interfaces

An interface defines a protocol of communication between two objects.

An interface declaration contains signatures, but no implementations, for a set of

methods, and might also contain constant definitions.

A class that implements an interface must implement all the methods declared in the

interface.

An interface name can be used anywhere a type can be used.

 - 125 -

Questions and Exercises: Interfaces

Questions

1. What methods would a class that implements the java.lang.CharSequence

interface have to implement?

2. What is wrong with the following interface?

public interface SomethingIsWrong {

 void aMethod(int aValue){

 System.out.println("Hi Mom");

 }

}

3. Fix the interface in question 2.

4. Is the following interface valid?

public interface Marker {

}

Exercises

1. Write a class that implements the CharSequence interface found in the

java.lang package. Select one of the sentences from this book to use as the

data. Write a small main method to test your class; make sure to call all four

methods.

2. Suppose you have written a time server that periodically notifies its clients of the

current date and time. Write an interface the server could use to enforce a

particular protocol on its clients.

 - 126 -

Inheritance

In the preceding lessons, you have seen inheritance mentioned several times. In the Java

language, classes can be derived from other classes, thereby inheriting fields and

methods from those classes.

Definitions:

A class that is derived from another class is called a subclass (also a derived class,

extended class, or child class). The class from which the subclass is derived is called a

superclass (also a base class or a parent class).

Excepting Object, which has no superclass, every class has one and only one direct

superclass (single inheritance). In the absence of any other explicit superclass, every

class is implicitly a subclass of Object.

Classes can be derived from classes that are derived from classes that are derived from

classes, and so on, and ultimately derived from the topmost class, Object. Such a class

is said to be descended from all the classes in the inheritance chain stretching back to

Object.

The idea of inheritance is simple but powerful: When you want to create a new class

and there is already a class that includes some of the code that you want, you can derive

your new class from the existing class. In doing this, you can reuse the fields and

methods of the existing class without having to write (and debug!) them yourself.

A subclass inherits all the members (fields, methods, and nested classes) from its

superclass. Constructors are not members, so they are not inherited by subclasses, but

the constructor of the superclass can be invoked from the subclass.

The Java Platform Class Hierarchy

The Object class, defined in the java.lang package, defines and implements behavior

common to all classes—including the ones that you write. In the Java platform, many

classes derive directly from Object, other classes derive from some of those classes,

and so on, forming a hierarchy of classes.

http://java.sun.com/javase/6/docs/api/java/lang/Object.html

 - 127 -

All Classes in the Java Platform are Descendants of Object

At the top of the hierarchy, Object is the most general of all classes. Classes near the

bottom of the hierarchy provide more specialized behavior.

An Example of Inheritance

Here is the sample code for a possible implementation of a Bicycle class that was

presented in the Classes and Objects lesson:
public class Bicycle {

 // the Bicycle class has three fields

 public int cadence;

 public int gear;

 public int speed;

 // the Bicycle class has one constructor

 public Bicycle(int startCadence, int startSpeed, int startGear) {

 gear = startGear;

 cadence = startCadence;

 speed = startSpeed;

 }

 // the Bicycle class has four methods

 public void setCadence(int newValue) {

 cadence = newValue;

 }

 public void setGear(int newValue) {

 gear = newValue;

 }

 public void applyBrake(int decrement) {

 speed -= decrement;

 }

 public void speedUp(int increment) {

 speed += increment;

 }

}

 - 128 -

A class declaration for a MountainBike class that is a subclass of Bicycle might look

like this:

public class MountainBike extends Bicycle {

 // the MountainBike subclass adds one field

 public int seatHeight;

 // the MountainBike subclass has one constructor

 public MountainBike(int startHeight, int startCadence, int

startSpeed, int startGear) {

 super(startCadence, startSpeed, startGear);

 seatHeight = startHeight;

 }

 // the MountainBike subclass adds one method

 public void setHeight(int newValue) {

 seatHeight = newValue;

 }

}

MountainBike inherits all the fields and methods of Bicycle and adds the field

seatHeight and a method to set it. Except for the constructor, it is as if you had written

a new MountainBike class entirely from scratch, with four fields and five methods.

However, you didn't have to do all the work. This would be especially valuable if the

methods in the Bicycle class were complex and had taken substantial time to debug.

What You Can Do in a Subclass

A subclass inherits all of the public and protected members of its parent, no matter what

package the subclass is in. If the subclass is in the same package as its parent, it also

inherits the package-private members of the parent. You can use the inherited members

as is, replace them, hide them, or supplement them with new members:

 The inherited fields can be used directly, just like any other fields.

 You can declare a field in the subclass with the same name as the one in the

superclass, thus hiding it (not recommended).

 You can declare new fields in the subclass that are not in the superclass.

 The inherited methods can be used directly as they are.

 You can write a new instance method in the subclass that has the same signature

as the one in the superclass, thus overriding it.

 You can write a new static method in the subclass that has the same signature as

the one in the superclass, thus hiding it.

 You can declare new methods in the subclass that are not in the superclass.

 You can write a subclass constructor that invokes the constructor of the

superclass, either implicitly or by using the keyword super.

The following sections in this lesson will expand on these topics.

 - 129 -

Private Members in a Superclass

A subclass does not inherit the private members of its parent class. However, if the

superclass has public or protected methods for accessing its private fields, these can also

be used by the subclass.

A nested class has access to all the private members of its enclosing class—both fields

and methods. Therefore, a public or protected nested class inherited by a subclass has

indirect access to all of the private members of the superclass.

Casting Objects

We have seen that an object is of the data type of the class from which it was

instantiated. For example, if we write

public MountainBike myBike = new MountainBike();

then myBike is of type MountainBike.

MountainBike is descended from Bicycle and Object. Therefore, a MountainBike is

a Bicycle and is also an Object, and it can be used wherever Bicycle or Object

objects are called for.

The reverse is not necessarily true: a Bicycle may be a MountainBike, but it isn't

necessarily. Similarly, an Object may be a Bicycle or a MountainBike, but it isn't

necessarily.

Casting shows the use of an object of one type in place of another type, among the

objects permitted by inheritance and implementations. For example, if we write

Object obj = new MountainBike();

then obj is both an Object and a Mountainbike (until such time as obj is assigned

another object that is not a Mountainbike). This is called implicit casting.

If, on the other hand, we write

MountainBike myBike = obj;

we would get a compile-time error because obj is not known to the compiler to be a

MountainBike. However, we can tell the compiler that we promise to assign a

MountainBike to obj by explicit casting:

MountainBike myBike = (MountainBike)obj;

This cast inserts a runtime check that obj is assigned a MountainBike so that the

compiler can safely assume that obj is a MountainBike. If obj is not a Mountainbike

at runtime, an exception will be thrown.

 - 130 -

Note: You can make a logical test as to the type of a particular object using the

instanceof operator. This can save you from a runtime error owing to an improper

cast. For example:

if (obj instanceof MountainBike) {

 MountainBike myBike = (MountainBike)obj;

}

Here the instanceof operator verifies that obj refers to a MountainBike so that we

can make the cast with knowledge that there will be no runtime exception thrown.

 - 131 -

Overriding and Hiding Methods

Instance Methods

An instance method in a subclass with the same signature (name, plus the number and

the type of its parameters) and return type as an instance method in the superclass

overrides the superclass's method.

The ability of a subclass to override a method allows a class to inherit from a superclass

whose behavior is "close enough" and then to modify behavior as needed. The

overriding method has the same name, number and type of parameters, and return type

as the method it overrides. An overriding method can also return a subtype of the type

returned by the overridden method. This is called a covariant return type.

When overriding a method, you might want to use the @Override annotation that

instructs the compiler that you intend to override a method in the superclass. If, for

some reason, the compiler detects that the method does not exist in one of the

superclasses, it will generate an error. For more information on @Override, see

Annotations.

Class Methods

If a subclass defines a class method with the same signature as a class method in the

superclass, the method in the subclass hides the one in the superclass.

The distinction between hiding and overriding has important implications. The version

of the overridden method that gets invoked is the one in the subclass. The version of the

hidden method that gets invoked depends on whether it is invoked from the superclass

or the subclass. Let's look at an example that contains two classes. The first is Animal,

which contains one instance method and one class method:

public class Animal {

 public static void testClassMethod() {

 System.out.println("The class method in Animal.");

 }

 public void testInstanceMethod() {

 System.out.println("The instance method in Animal.");

 }

}

The second class, a subclass of Animal, is called Cat:
public class Cat extends Animal {

 public static void testClassMethod() {

 System.out.println("The class method in Cat.");

 }

 public void testInstanceMethod() {

 System.out.println("The instance method in Cat.");

 }

 public static void main(String[] args) {

 Cat myCat = new Cat();

 Animal myAnimal = myCat;

 Animal.testClassMethod();

 myAnimal.testInstanceMethod();

http://java.sun.com/docs/books/tutorial/java/javaOO/annotations.html

 - 132 -

 }

}

The Cat class overrides the instance method in Animal and hides the class method in

Animal. The main method in this class creates an instance of Cat and calls

testClassMethod() on the class and testInstanceMethod() on the instance.

The output from this program is as follows:

The class method in Animal.

The instance method in Cat.

As promised, the version of the hidden method that gets invoked is the one in the

superclass, and the version of the overridden method that gets invoked is the one in the

subclass.

Modifiers

The access specifier for an overriding method can allow more, but not less, access than

the overridden method. For example, a protected instance method in the superclass can

be made public, but not private, in the subclass.

You will get a compile-time error if you attempt to change an instance method in the

superclass to a class method in the subclass, and vice versa.

Summary

The following table summarizes what happens when you define a method with the same

signature as a method in a superclass.

Defining a Method with the Same Signature as a Superclass's Method

Superclass Instance

Method
Superclass Static Method

Subclass Instance

Method
Overrides

Generates a compile-time

error

Subclass Static Method
Generates a compile-time

error
Hides

Note: In a subclass, you can overload the methods inherited from the superclass. Such

overloaded methods neither hide nor override the superclass methods—they are new

methods, unique to the subclass.

 - 133 -

Hiding Fields

Within a class, a field that has the same name as a field in the superclass hides the

superclass's field, even if their types are different. Within the subclass, the field in the

superclass cannot be referenced by its simple name. Instead, the field must be accessed

through super, which is covered in the next section. Generally speaking, we don't

recommend hiding fields as it makes code difficult to read.

 - 134 -

Using the Keyword super

Accessing Superclass Members

If your method overrides one of its superclass's methods, you can invoke the overridden

method through the use of the keyword super. You can also use super to refer to a

hidden field (although hiding fields is discouraged). Consider this class, Superclass:
public class Superclass {

 public void printMethod() {

 System.out.println("Printed in Superclass.");

 }

}

Here is a subclass, called Subclass, that overrides printMethod():

public class Subclass extends Superclass {

 public void printMethod() { //overrides printMethod in Superclass

 super.printMethod();

 System.out.println("Printed in Subclass");

 }

 public static void main(String[] args) {

 Subclass s = new Subclass();

 s.printMethod();

 }

}

Within Subclass, the simple name printMethod() refers to the one declared in

Subclass, which overrides the one in Superclass. So, to refer to printMethod()

inherited from Superclass, Subclass must use a qualified name, using super as

shown. Compiling and executing Subclass prints the following:

Printed in Superclass.

Printed in Subclass

Subclass Constructors

The following example illustrates how to use the super keyword to invoke a

superclass's constructor. Recall from the Bicycle example that MountainBike is a

subclass of Bicycle. Here is the MountainBike (subclass) constructor that calls the

superclass constructor and then adds initialization code of its own:

 public MountainBike(int startHeight, int startCadence, int

startSpeed, int startGear) {

 super(startCadence, startSpeed, startGear);

 seatHeight = startHeight;

 }

Invocation of a superclass constructor must be the first line in the subclass constructor.

http://java.sun.com/docs/books/tutorial/java/IandI/subclasses.html

 - 135 -

The syntax for calling a superclass constructor is

super();

--or--

super(parameter list);

With super(), the superclass no-argument constructor is called. With

super(parameter list), the superclass constructor with a matching parameter list is

called.

Note: If a constructor does not explicitly invoke a superclass constructor, the Java

compiler automatically inserts a call to the no-argument constructor of the superclass. If

the super class does not have a no-argument constructor, you will get a compile-time

error. Object does have such a constructor, so if Object is the only superclass, there is

no problem.

If a subclass constructor invokes a constructor of its superclass, either explicitly or

implicitly, you might think that there will be a whole chain of constructors called, all the

way back to the constructor of Object. In fact, this is the case. It is called constructor

chaining, and you need to be aware of it when there is a long line of class descent.

 - 136 -

Object as a Superclass

The Object class, in the java.lang package, sits at the top of the class hierarchy tree.

Every class is a descendant, direct or indirect, of the Object class. Every class you use

or write inherits the instance methods of Object. You need not use any of these

methods, but, if you choose to do so, you may need to override them with code that is

specific to your class. The methods inherited from Object that are discussed in this

section are:

 protected Object clone() throws CloneNotSupportedException
 Creates and returns a copy of this object.

 public boolean equals(Object obj)

 Indicates whether some other object is "equal to" this one.

 protected void finalize() throws Throwable
 Called by the garbage collector on an object when garbage

 collection determines that there are no more references to the object

 public final Class getClass()

 Returns the runtime class of an object.

 public int hashCode()

 Returns a hash code value for the object.

 public String toString()

 Returns a string representation of the object.

The notify, notifyAll, and wait methods of Object all play a part in synchronizing

the activities of independently running threads in a program, which is discussed in a

later lesson and won't be covered here. There are five of these methods:

 public final void notify()

 public final void notifyAll()

 public final void wait()

 public final void wait(long timeout)

 public final void wait(long timeout, int nanos)

Note: There are some subtle aspects to a number of these methods, especially the clone

method. You can get information on the correct usage of these methods in the book

Effective Java by Josh Bloch.

The clone() Method

If a class, or one of its superclasses, implements the Cloneable interface, you can use

the clone() method to create a copy from an existing object. To create a clone, you

write:

aCloneableObject.clone();

Object's implementation of this method checks to see whether the object on which

clone() was invoked implements the Cloneable interface. If the object does not, the

http://java.sun.com/javase/6/docs/api/java/lang/Object.html
http://java.sun.com/docs/books/effective

 - 137 -

method throws a CloneNotSupportedException exception. Exception handling will be

covered in a later lesson. For the moment, you need to know that clone() must be

declared as

protected Object clone() throws CloneNotSupportedException

 -- or --

public Object clone() throws CloneNotSupportedException

if you are going to write a clone() method to override the one in Object.

If the object on which clone() was invoked does implement the Cloneable interface,

Object's implementation of the clone() method creates an object of the same class as

the original object and initializes the new object's member variables to have the same

values as the original object's corresponding member variables.

The simplest way to make your class cloneable is to add implements Cloneable to

your class's declaration. then your objects can invoke the clone() method.

For some classes, the default behavior of Object's clone() method works just fine. If,

however, an object contains a reference to an external object, say ObjExternal, you

may need to override clone() to get correct behavior. Otherwise, a change in

ObjExternal made by one object will be visible in its clone also. This means that the

original object and its clone are not independent—to decouple them, you must override

clone() so that it clones the object and ObjExternal. Then the original object

references ObjExternal and the clone references a clone of ObjExternal, so that the

object and its clone are truly independent.

The equals() Method

The equals() method compares two objects for equality and returns true if they are

equal. The equals() method provided in the Object class uses the identity operator

(==) to determine whether two objects are equal. For primitive data types, this gives the

correct result. For objects, however, it does not. The equals() method provided by

Object tests whether the object references are equal—that is, if the objects compared

are the exact same object.

To test whether two objects are equal in the sense of equivalency (containing the same

information), you must override the equals() method. Here is an example of a Book

class that overrides equals():

public class Book {

 ...

 public boolean equals(Object obj) {

 if (obj instanceof Book)

 return ISBN.equals((Book)obj.getISBN());

 else

 return false;

 }

}

Consider this code that tests two instances of the Book class for equality:

 - 138 -

Book firstBook = new Book("0201914670"); //Swing Tutorial, 2nd

edition

Book secondBook = new Book("0201914670");

if (firstBook.equals(secondBook)) {

 System.out.println("objects are equal");

} else {

 System.out.println("objects are not equal");

}

This program displays objects are equal even though firstBook and secondBook

reference two distinct objects. They are considered equal because the objects compared

contain the same ISBN number.

You should always override the equals() method if the identity operator is not

appropriate for your class.

Note: If you override equals(), you must override hashCode() as well.

The finalize() Method

The Object class provides a callback method, finalize(), that may be invoked on an

object when it becomes garbage. Object's implementation of finalize() does

nothing—you can override finalize() to do cleanup, such as freeing resources.

The finalize() method may be called automatically by the system, but when it is

called, or even if it is called, is uncertain. Therefore, you should not rely on this method

to do your cleanup for you. For example, if you don't close file descriptors in your code

after performing I/O and you expect finalize() to close them for you, you may run

out of file descriptors.

The getClass() Method

You cannot override getClass.

The getClass() method returns a Class object, which has methods you can use to get

information about the class, such as its name (getSimpleName()), its superclass

(getSuperclass()), and the interfaces it implements (getInterfaces()). For

example, the following method gets and displays the class name of an object:

void printClassName(Object obj) {

 System.out.println("The object's class is "

 obj.getClass().getSimpleName());

}

The Class class, in the java.lang package, has a large number of methods (more than

50). For example, you can test to see if the class is an annotation (isAnnotation()), an

interface (isInterface()), or an enumeration (isEnum()). You can see what the

object's fields are (getFields()) or what its methods are (getMethods()), and so on.

http://java.sun.com/javase/6/docs/api/java/lang/Class.html

 - 139 -

The hashCode() Method

The value returned by hashCode() is the object's hash code, which is the object's

memory address in hexadecimal.

By definition, if two objects are equal, their hash code must also be equal. If you

override the equals() method, you change the way two objects are equated and

Object's implementation of hashCode() is no longer valid. Therefore, if you override

the equals() method, you must also override the hashCode() method as well.

The toString() Method

You should always consider overriding the toString() method in your classes.

The Object's toString() method returns a String representation of the object, which

is very useful for debugging. The String representation for an object depends entirely

on the object, which is why you need to override toString() in your classes.

You can use toString() along with System.out.println() to display a text

representation of an object, such as an instance of Book:

System.out.println(firstBook.toString());

which would, for a properly overridden toString() method, print something useful,

like this:

ISBN: 0201914670; The JFC Swing Tutorial; A Guide to Constructing

GUIs, 2nd Edition

 - 140 -

Writing Final Classes and Methods

You can declare some or all of a class's methods final. You use the final keyword in a

method declaration to indicate that the method cannot be overridden by subclasses. The

Object class does this—a number of its methods are final.

You might wish to make a method final if it has an implementation that should not be

changed and it is critical to the consistent state of the object. For example, you might

want to make the getFirstPlayer method in this ChessAlgorithm class final:

class ChessAlgorithm {

 enum ChessPlayer { WHITE, BLACK }

 ...

 final ChessPlayer getFirstPlayer() {

 return ChessPlayer.WHITE;

 }

 ...

}

Methods called from constructors should generally be declared final. If a constructor

calls a non-final method, a subclass may redefine that method with surprising or

undesirable results.

Note that you can also declare an entire class final — this prevents the class from being

subclassed. This is particularly useful, for example, when creating an immutable class

like the String class.

 - 141 -

Abstract Methods and Classes

An abstract class is a class that is declared abstract—it may or may not include

abstract methods. Abstract classes cannot be instantiated, but they can be subclassed.

An abstract method is a method that is declared without an implementation (without

braces, and followed by a semicolon), like this:

abstract void moveTo(double deltaX, double deltaY);

If a class includes abstract methods, the class itself must be declared abstract, as in:

public abstract class GraphicObject {

 // declare fields

 // declare non-abstract methods

 abstract void draw();

}

When an abstract class is subclassed, the subclass usually provides implementations for

all of the abstract methods in its parent class. However, if it does not, the subclass must

also be declared abstract.

Note: All of the methods in an interface (see the Interfaces section) are implicitly

abstract, so the abstract modifier is not used with interface methods (it could be—it's

just not necessary).

Abstract Classes versus Interfaces

Unlike interfaces, abstract classes can contain fields that are not static and final, and

they can contain implemented methods. Such abstract classes are similar to interfaces,

except that they provide a partial implementation, leaving it to subclasses to complete

the implementation. If an abstract class contains only abstract method declarations, it

should be declared as an interface instead.

Multiple interfaces can be implemented by classes anywhere in the class hierarchy,

whether or not they are related to one another in any way. Think of Comparable or

Cloneable, for example.

By comparison, abstract classes are most commonly subclassed to share pieces of

implementation. A single abstract class is subclassed by similar classes that have a lot in

common (the implemented parts of the abstract class), but also have some differences

(the abstract methods).

An Abstract Class Example

In an object-oriented drawing application, you can draw circles, rectangles, lines, Bezier

curves, and many other graphic objects. These objects all have certain states (for

example: position, orientation, line color, fill color) and behaviors (for example:

moveTo, rotate, resize, draw) in common. Some of these states and behaviors are the

http://java.sun.com/docs/books/tutorial/java/IandI/createinterface.html

 - 142 -

same for all graphic objects—for example: position, fill color, and moveTo. Others

require different implementations—for example, resize or draw. All GraphicObjects

must know how to draw or resize themselves; they just differ in how they do it. This is a

perfect situation for an abstract superclass. You can take advantage of the similarities

and declare all the graphic objects to inherit from the same abstract parent object—for

example, GraphicObject, as shown in the following figure.

Classes Rectangle, Line, Bezier, and Circle inherit from
GraphicObject

First, you declare an abstract class, GraphicObject, to provide member variables and

methods that are wholly shared by all subclasses, such as the current position and the

moveTo method. GraphicObject also declares abstract methods for methods, such as

draw or resize, that need to be implemented by all subclasses but must be

implemented in different ways. The GraphicObject class can look something like this:

abstract class GraphicObject {

 int x, y;

 ...

 void moveTo(int newX, int newY) {

 ...

 }

 abstract void draw();

 abstract void resize();

}

Each non-abstract subclass of GraphicObject, such as Circle and Rectangle, must

provide implementations for the draw and resize methods:
class Circle extends GraphicObject {

 void draw() {

 ...

 }

 void resize() {

 ...

 }

}

class Rectangle extends GraphicObject {

 void draw() {

 ...

 }

 void resize() {

 ...

 }

}

When an Abstract Class Implements an Interface

In the section on Interfaces , it was noted that a class that implements an interface

must implement all of the interface's methods. It is possible, however, to define a class

http://java.sun.com/docs/books/tutorial/java/IandI/createinterface.html

 - 143 -

that does not implement all of the interface methods, provided that the class is declared

to be abstract. For example,

abstract class X implements Y {

 // implements all but one method of Y

}

class XX extends X {

 // implements the remaining method in Y

}

In this case, class X must be abstract because it does not fully implement Y, but class

XX does, in fact, implement Y.

Class Members

An abstract class may have static fields and static methods. You can use these static

members with a class reference—for example, AbstractClass.staticMethod()—as

you would with any other class.

 - 144 -

Summary of Inheritance

Except for the Object class, a class has exactly one direct superclass. A class inherits

fields and methods from all its superclasses, whether direct or indirect. A subclass can

override methods that it inherits, or it can hide fields or methods that it inherits. (Note

that hiding fields is generally bad programming practice.)

The table in Overriding and Hiding Methods section shows the effect of declaring a

method with the same signature as a method in the superclass.

The Object class is the top of the class hierarchy. All classes are descendants from this

class and inherit methods from it. Useful methods inherited from Object include

toString(), equals(), clone(), and getClass().

You can prevent a class from being subclassed by using the final keyword in the

class's declaration. Similarly, you can prevent a method from being overridden by

subclasses by declaring it as a final method.

An abstract class can only be subclassed; it cannot be instantiated. An abstract class can

contain abstract methods—methods that are declared but not implemented. Subclasses

then provide the implementations for the abstract methods.

http://java.sun.com/docs/books/tutorial/java/IandI/override.html

 - 145 -

Questions and Exercises: Inheritance

Questions

1. Consider the following two classes:
public class ClassA {

 public void methodOne(int i) {

 }

 public void methodTwo(int i) {

 }

 public static void methodThree(int i) {

 }

 public static void methodFour(int i) {

 }

}

public class ClassB extends ClassA {

 public static void methodOne(int i) {

 }

 public void methodTwo(int i) {

 }

 public void methodThree(int i) {

 }

 public static void methodFour(int i) {

 }

}

a. Which method overrides a method in the superclass?

b. Which method hides a method in the superclass?

c. What do the other methods do?

2. Consider the Card, Deck, and DisplayDeck classes you wrote in Questions and

Exercises: Classes . What Object methods should each of these classes override?

Exercises

1. Write the implementations for the methods that you answered in question 2.

http://java.sun.com/docs/books/tutorial/java/IandI/examples/Card.java
http://java.sun.com/docs/books/tutorial/java/IandI/examples/Deck.java
http://java.sun.com/docs/books/tutorial/java/IandI/examples/DisplayDeck.java
http://java.sun.com/docs/books/tutorial/java/javaOO/QandE/creating-questions.html
http://java.sun.com/docs/books/tutorial/java/javaOO/QandE/creating-questions.html

 - 146 -

Lesson: Numbers and Strings

Numbers

This section begins with a discussion of the Number class (in the java.lang package)

and its subclasses. In particular, this section talks about the situations where you would

use instantiations of these classes rather than the primitive data types. Additionally, this

section talks about other classes you might need to work with numbers, such as

formatting or using mathematical functions to complement the operators built into the

language.

Strings

Strings, which are widely used in Java programming, are a sequence of characters. In

the Java programming language, strings are objects. This section describes using the

String class to create and manipulate strings. It also compares the String and

StringBuilder classes.

http://java.sun.com/docs/books/tutorial/java/data/numbers.html
http://java.sun.com/docs/books/tutorial/java/data/strings.html

 - 147 -

Numbers

This section begins with a discussion of the Number class in the java.lang package, its

subclasses, and the situations where you would use instantiations of these classes rather

than the primitive number types.

This section also presents the PrintStream and DecimalFormat classes, which provide

methods for writing formatted numerical output.

Finally, the Math class in java.lang is discussed. It contains mathematical functions to

complement the operators built into the language. This class has methods for the

trigonometric functions, exponential functions, and so forth.

http://java.sun.com/javase/6/docs/api/java/lang/Number.html
http://java.sun.com/javase/6/docs/api/java/io/PrintStream.html
http://java.sun.com/javase/6/docs/api/java/text/DecimalFormat.html
http://java.sun.com/javase/6/docs/api/java/lang/Math.html

 - 148 -

The Numbers Classes

When working with numbers, most of the time you use the primitive types in your code.

For example:

int i = 500;

float gpa = 3.65f;

byte mask = 0xff;

There are, however, reasons to use objects in place of primitives, and the Java platform

provides wrapper classes for each of the primitive data types. These classes "wrap" the

primitive in an object. Often, the wrapping is done by the compiler—if you use a

primitive where an object is expected, the compiler boxes the primitive in its wrapper

class for you. Similarly, if you use a number object when a primitive is expected, the

compiler unboxes the object for you.

Here is an example of boxing and unboxing:

Integer x, y;

x = 12;

y = 15;

System.out.println(x+y);

When x and y are assigned integer values, the compiler boxes the integers because x and

y are integer objects. In the println() statement, x and y are unboxed so that they can

be added as integers.

All of the numeric wrapper classes are subclasses of the abstract class Number:

Note: There are four other subclasses of Number that are not discussed here.

BigDecimal and BigInteger are used for high-precision calculations. AtomicInteger

and AtomicLong are used for multi-threaded applications.

There are three reasons that you might use a Number object rather than a primitive:

1. As an argument of a method that expects an object (often used when

manipulating collections of numbers).

2. To use constants defined by the class, such as MIN_VALUE and MAX_VALUE, that

provide the upper and lower bounds of the data type.

 - 149 -

3. To use class methods for converting values to and from other primitive types,

for converting to and from strings, and for converting between number systems

(decimal, octal, hexadecimal, binary).

The following table lists the instance methods that all the subclasses of the Number class

implement.

Methods Implemented by all Subclasses of Number

Method Description

byte byteValue()
short shortValue()
int intValue()
long longValue()
float floatValue()
double doubleValue()

Converts the value of this Number object to

the primitive data type returned.

int compareTo(Byte anotherByte)

int compareTo(Double

anotherDouble)

int compareTo(Float anotherFloat)

int compareTo(Integer

anotherInteger)

int compareTo(Long anotherLong)

int compareTo(Short anotherShort)

Compares this Number object to the

argument.

boolean equals(Object obj)

Determines whether this number object is

equal to the argument.

The methods return true if the argument

is not null and is an object of the same

type and with the same numeric value.

There are some extra requirements for

Double and Float objects that are

described in the Java API documentation.

Each Number class contains other methods that are useful for converting numbers to and

from strings and for converting between number systems. The following table lists these

methods in the Integer class. Methods for the other Number subclasses are similar:

Conversion Methods, Integer Class

Method Description

static Integer decode(String s)
Decodes a string into an integer. Can

accept string representations of decimal,

octal, or hexadecimal numbers as input.

static int parseInt(String s) Returns an integer (decimal only).

static int parseInt(String s, int

radix)

Returns an integer, given a string

representation of decimal, binary, octal, or

hexadecimal (radix equals 10, 2, 8, or 16

 - 150 -

respectively) numbers as input.

String toString()
Returns a String object representing the

value of this Integer.

static String toString(int i)
Returns a String object representing the

specified integer.

static Integer valueOf(int i)
Returns an Integer object holding the

value of the specified primitive.

static Integer valueOf(String s)
Returns an Integer object holding the

value of the specified string

representation.

static Integer valueOf(String s,

int radix)

Returns an Integer object holding the

integer value of the specified string

representation, parsed with the value of

radix. For example, if s = "333" and radix

= 8, the method returns the base-ten

integer equivalent of the octal number 333.

 - 151 -

Formatting Numeric Print Output

Earlier you saw the use of the print and println methods for printing strings to

standard output (System.out). Since all numbers can be converted to strings (as you

will see later in this lesson), you can use these methods to print out an arbitrary mixture

of strings and numbers. The Java programming language has other methods, however,

that allow you to exercise much more control over your print output when numbers are

included.

The printf and format Methods

The java.io package includes a PrintStream class that has two formatting methods

that you can use to replace print and println. These methods, format and printf,

are equivalent to one another. The familiar System.out that you have been using

happens to be a PrintStream object, so you can invoke PrintStream methods on

System.out. Thus, you can use format or printf anywhere in your code where you

have previously been using print or println. For example,

System.out.format(.....);

The syntax for these two java.io.PrintStream methods is the same:

public PrintStream format(String format, Object... args)

where format is a string that specifies the formatting to be used and args is a list of the

variables to be printed using that formatting. A simple example would be

System.out.format("The value of the float variable is %f, while the

value of the " +

 "integer variable is %d, and the string is %s",

floatVar, intVar, stringVar);

The first parameter, format, is a format string specifying how the objects in the second

parameter, args, are to be formatted. The format string contains plain text as well as

format specifiers, which are special characters that format the arguments of Object...

args. (The notation Object... args is called varargs, which means that the number

of arguments may vary.)

Format specifiers begin with a percent sign (%) and end with a converter. The converter

is a character indicating the type of argument to be formatted. In between the percent

sign (%) and the converter you can have optional flags and specifiers. There are many

converters, flags, and specifiers, which are documented in java.util.Formatter

Here is a basic example:

int i = 461012;

System.out.format("The value of i is: %d%n", i);

The %d specifies that the single variable is a decimal integer. The %n is a platform-

independent newline character. The output is:

http://java.sun.com/javase/6/docs/api/java/io/PrintStream.html
http://java.sun.com/javase/6/docs/api/java/util/Formatter.html

 - 152 -

The value of i is: 461012

The printf and format methods are overloaded. Each has a version with the following

syntax:

public PrintStream format(Locale l, String format, Object... args)

To print numbers in the French system (where a comma is used in place of the decimal

place in the English representation of floating point numbers), for example, you would

use:

System.out.format(Locale.FRANCE, "The value of the float variable is

%f, while the value of the " +

 "integer variable is %d, and the string is %s%n",

floatVar, intVar, stringVar);

An Example

The following table lists some of the converters and flags that are used in the sample

program, TestFormat.java, that follows the table.

Converters and Flags Used in TestFormat.java

Converter Flag Explanation

d A decimal integer.

f A float.

n

A new line character appropriate to the

platform running the application. You

should always use %n, rather than \n.

tB
A date & time conversion—locale-

specific full name of month.

td, te

A date & time conversion—2-digit day

of month. td has leading zeroes as

needed, te does not.

ty, tY
A date & time conversion—ty = 2-digit

year, tY = 4-digit year.

tl
A date & time conversion—hour in 12-

hour clock.

tM

A date & time conversion—minutes in

2 digits, with leading zeroes as

necessary.

tp
A date & time conversion—locale-

specific am/pm (lower case).

tm
A date & time conversion—months in 2

digits, with leading zeroes as necessary.

 - 153 -

tD
A date & time conversion—date as

%tm%td%ty

 08
Eight characters in width, with leading

zeroes as necessary.

 +
Includes sign, whether positive or

negative.

 ,
Includes locale-specific grouping

characters.

 - Left-justified..

 .3 Three places after decimal point.

 10.3
Ten characters in width, right justified,

with three places after decimal point.

The following program shows some of the formatting that you can do with format. The

output is shown within double quotes in the embedded comment:

import java.util.Calendar;

import java.util.Locale;

public class TestFormat {

 public static void main(String[] args) {

 long n = 461012;

 System.out.format("%d%n", n); // --> "461012"

 System.out.format("%08d%n", n); // -->

"00461012"

 System.out.format("%+8d%n", n); // --> "

+461012"

 System.out.format("%,8d%n", n); // --> "

461,012"

 System.out.format("%+,8d%n%n", n); // -->

"+461,012"

 double pi = Math.PI;

 System.out.format("%f%n", pi); // -->

"3.141593"

 System.out.format("%.3f%n", pi); // --> "3.142"

 System.out.format("%10.3f%n", pi); // --> "

3.142"

 System.out.format("%-10.3f%n", pi); // --> "3.142"

 System.out.format(Locale.FRANCE,

 "%-10.4f%n%n", pi); // --> "3,1416"

 Calendar c = Calendar.getInstance();

 System.out.format("%tB %te, %tY%n", c, c, c); // --> "May 29,

2006"

 System.out.format("%tl:%tM %tp%n", c, c, c); // --> "2:34

am"

 System.out.format("%tD%n", c); // -->

"05/29/06"

 }

}

 - 154 -

Note: The discussion in this section covers just the basics of the format and printf

methods. Further detail can be found in the Basic I/O section titled "Formatting".

Using String.format to create strings is covered in Strings.

The DecimalFormat Class

You can use the java.text.DecimalFormat class to control the display of leading and

trailing zeros, prefixes and suffixes, grouping (thousands) separators, and the decimal

separator. DecimalFormat offers a great deal of flexibility in the formatting of numbers,

but it can make your code more complex.

The example that follows creates a DecimalFormat object, myFormatter, by passing a

pattern string to the DecimalFormat constructor. The format() method, which

DecimalFormat inherits from NumberFormat, is then invoked by myFormatter—it

accepts a double value as an argument and returns the formatted number in a string:

Here is a sample program that illustrates the use of DecimalFormat:

import java.text.*;

public class DecimalFormatDemo {

 static public void customFormat(String pattern, double value) {

 DecimalFormat myFormatter = new DecimalFormat(pattern);

 String output = myFormatter.format(value);

 System.out.println(value + " " + pattern + " " + output);

 }

 static public void main(String[] args) {

 customFormat("###,###.###", 123456.789);

 customFormat("###.##", 123456.789);

 customFormat("000000.000", 123.78);

 customFormat("$###,###.###", 12345.67);

 }

}

The output is:

123456.789 ###,###.### 123,456.789

123456.789 ###.## 123456.79

123.78 000000.000 000123.780

12345.67 $###,###.### $12,345.67

The following table explains each line of output.

DecimalFormat.java Output

Value Pattern Output Explanation

123456.789 ###,###.### 123,456.789 The pound sign (#) denotes a digit, the

http://java.sun.com/docs/books/tutorial/essential/io/formatting.html
http://java.sun.com/docs/books/tutorial/java/data/strings.html
http://java.sun.com/javase/6/docs/api/java/text/DecimalFormat.html

 - 155 -

comma is a placeholder for the grouping

separator, and the period is a placeholder

for the decimal separator.

123456.789 ###.## 123456.79

The value has three digits to the right of

the decimal point, but the pattern has only

two. The format method handles this by

rounding up.

123.78 000000.000 000123.780
The pattern specifies leading and trailing

zeros, because the 0 character is used

instead of the pound sign (#).

12345.67 $###,###.### $12,345.67

The first character in the pattern is the

dollar sign ($). Note that it immediately

precedes the leftmost digit in the formatted

output.

 - 156 -

Beyond Basic Arithmetic

The Java programming language supports basic arithmetic with its arithmetic operators:

+, -, *, /, and %. The Math class in the java.lang package provides methods and

constants for doing more advanced mathematical computation.

The methods in the Math class are all static, so you call them directly from the class,

like this:

Math.cos(angle);

Note : Using the static import language feature, you don't have to write Math in

front of every math function:
import static java.lang.Math.*;

This allows you to invoke the Math class methods by their simple names. For example:
cos(angle);

Constants and Basic Methods

The Math class includes two constants:

 Math.E, which is the base of natural logarithms, and

 Math.PI, which is the ratio of the circumference of a circle to its diameter.

The Math class also includes more than 40 static methods. The following table lists a

number of the basic methods.

Basic Math Methods

Method Description

double abs(double d)

float abs(float f)

int abs(int i)

long abs(long lng)

Returns the absolute value of the

argument.

double ceil(double d)
Returns the smallest integer that is greater

than or equal to the argument. Returned as

a double.

double floor(double d)
Returns the largest integer that is less than

or equal to the argument. Returned as a

double.

double rint(double d)
Returns the integer that is closest in value

to the argument. Returned as a double.

long round(double d)

int round(float f)

Returns the closest long or int, as indicated

by the method's return type, to the

argument.

http://java.sun.com/javase/6/docs/api/java/lang/Math.html
http://java.sun.com/docs/books/tutorial/java/package/usepkgs.html#staticimport

 - 157 -

double min(double arg1, double

arg2)

float min(float arg1, float arg2)

int min(int arg1, int arg2)

long min(long arg1, long arg2)

Returns the smaller of the two arguments.

double max(double arg1, double

arg2)

float max(float arg1, float arg2)

int max(int arg1, int arg2)

long max(long arg1, long arg2)

Returns the larger of the two arguments.

The following program, BasicMathDemo , illustrates how to use some of these

methods:

public class BasicMathDemo {

 public static void main(String[] args) {

 double a = -191.635;

 double b = 43.74;

 int c = 16, d = 45;

 System.out.printf("The absolute value of %.3f is %.3f%n", a,

Math.abs(a));

 System.out.printf("The ceiling of %.2f is %.0f%n", b,

Math.ceil(b));

 System.out.printf("The floor of %.2f is %.0f%n", b,

Math.floor(b));

 System.out.printf("The rint of %.2f is %.0f%n", b,

Math.rint(b));

 System.out.printf("The max of %d and %d is %d%n",c, d,

Math.max(c, d));

 System.out.printf("The min of of %d and %d is %d%n",c, d,

Math.min(c, d));

 }

}

Here's the output from this program:

The absolute value of -191.635 is 191.635

The ceiling of 43.74 is 44

The floor of 43.74 is 43

The rint of 43.74 is 44

The max of 16 and 45 is 45

The min of 16 and 45 is 16

Exponential and Logarithmic Methods

The next table lists exponential and logarithmic methods of the Math class.

Exponential and Logarithmic Methods

Method Description

http://java.sun.com/docs/books/tutorial/java/data/examples/BasicMathDemo.java

 - 158 -

double exp(double d)
Returns the base of the natural logarithms,

e, to the power of the argument.

double log(double d)
Returns the natural logarithm of the

argument.

double pow(double base, double

exponent)

Returns the value of the first argument

raised to the power of the second

argument.

double sqrt(double d) Returns the square root of the argument.

The following program, ExponentialDemo , displays the value of e, then calls each of

the methods listed in the previous table on arbitrarily chosen numbers:

public class ExponentialDemo {

 public static void main(String[] args) {

 double x = 11.635;

 double y = 2.76;

 System.out.printf("The value of e is %.4f%n", Math.E);

 System.out.printf("exp(%.3f) is %.3f%n", x, Math.exp(x));

 System.out.printf("log(%.3f) is %.3f%n", x, Math.log(x));

 System.out.printf("pow(%.3f, %.3f) is %.3f%n", x, y,

Math.pow(x, y));

 System.out.printf("sqrt(%.3f) is %.3f%n", x, Math.sqrt(x));

 }

}

Here's the output you'll see when you run ExponentialDemo:

The value of e is 2.7183

exp(11.635) is 112983.831

log(11.635) is 2.454

pow(11.635, 2.760) is 874.008

sqrt(11.635) is 3.411

Trigonometric Methods

The Math class also provides a collection of trigonometric functions, which are

summarized in the following table. The value passed into each of these methods is an

angle expressed in radians. You can use the toRadians method to convert from degrees

to radians.

Trigonometric Methods

Method Description

double sin(double d)
Returns the sine of the specified double

value.

double cos(double d)
Returns the cosine of the specified double

value.

http://java.sun.com/docs/books/tutorial/java/data/examples/ExponentialDemo.java

 - 159 -

double tan(double d)
Returns the tangent of the specified double

value.

double asin(double d)
Returns the arcsine of the specified double

value.

double acos(double d)
Returns the arccosine of the specified

double value.

double atan(double d)
Returns the arctangent of the specified

double value.

double atan2(double y, double x)
Converts rectangular coordinates (x, y)

to polar coordinate (r, theta) and

returns theta.

double toDegrees(double d)

double toRadians(double d)
Converts the argument to degrees or

radians.

Here's a program, TrigonometricDemo , that uses each of these methods to compute

various trigonometric values for a 45-degree angle:

public class TrigonometricDemo {

 public static void main(String[] args) {

 double degrees = 45.0;

 double radians = Math.toRadians(degrees);

 System.out.format("The value of pi is %.4f%n", Math.PI);

 System.out.format("The sine of %.1f degrees is %.4f%n",

degrees,

Math.sin(radians));

 System.out.format("The cosine of %.1f degrees is %.4f%n",

degrees,

 Math.cos(radians));

 System.out.format("The tangent of %.1f degrees is %.4f%n",

degrees,

 Math.tan(radians));

 System.out.format("The arcsine of %.4f is %.4f degrees %n",

 Math.sin(radians),

Math.toDegrees(Math.asin(Math.sin(radians))));

 System.out.format("The arccosine of %.4f is %.4f degrees %n",

 Math.cos(radians),

Math.toDegrees(Math.acos(Math.cos(radians))));

 System.out.format("The arctangent of %.4f is %.4f degrees %n",

 Math.tan(radians),

Math.toDegrees(Math.atan(Math.tan(radians))));

 }

}

The output of this program is as follows:

The value of pi is 3.1416

http://java.sun.com/docs/books/tutorial/java/data/examples/TrigonometricDemo.java

 - 160 -

The sine of 45.0 degrees is 0.7071

The cosine of 45.0 degrees is 0.7071

The tangent of 45.0 degrees is 1.0000

The arcsine of 0.7071 is 45.0000 degrees

The arccosine of 0.7071 is 45.0000 degrees

The arctangent of 1.0000 is 45.0000 degrees

Random Numbers

The random() method returns a pseudo-randomly selected number between 0.0 and 1.0.

The range includes 0.0 but not 1.0. In other words: 0.0 <= Math.random() < 1.0. To

get a number in a different range, you can perform arithmetic on the value returned by

the random method. For example, to generate an integer between 0 and 9, you would

write:

int number = (int)(Math.random() * 10);

By multiplying the value by 10, the range of possible values becomes 0.0 <= number

< 10.0.

Using Math.random works well when you need to generate a single random number. If

you need to generate a series of random numbers, you should create an instance of

java.util.Random and invoke methods on that object to generate numbers.

 - 161 -

Summary of Numbers

You use one of the wrapper classes – Byte, Double, Float, Integer, Long, or Short –

to wrap a number of primitive type in an object. The Java compiler automatically wraps

(boxes) primitives for you when necessary and unboxes them, again when necessary.

The Number classes include constants and useful class methods. The MIN_VALUE and

MAX_VALUE constants contain the smallest and largest values that can be contained by an

object of that type. The byteValue, shortValue, and similar methods convert one

numeric type to another. The valueOf method converts a string to a number, and the

toString method converts a number to a string.

To format a string containing numbers for output, you can use the printf() or

format() methods in the PrintStream class. Alternatively, you can use the

NumberFormat class to customize numerical formats using patterns.

The Math class contains a variety of class methods for performing mathematical

functions, including exponential, logarithmic, and trigonometric methods. Math also

includes basic arithmetic functions, such as absolute value and rounding, and a method,

random(), for generating random numbers.

 - 162 -

Questions and Exercises: Numbers

Questions

1. Use the API documentation to find the answers to the following questions:

a. What Integer method can you use to convert an int into a string that expresses the

number in hexadecimal? For example, what method converts the integer 65 into the

string "41"?

b. What Integer method would you use to convert a string expressed in base 5 into the

equivalent int? For example, how would you convert the string "230" into the integer

value 65? Show the code you would use to accomplish this task.

c. What Double method can you use to detect whether a floating-point number has the

special value Not a Number (NaN)?

2. What is the value of the following expression, and why?
Integer.valueOf(1).equals(Long.valueOf(1))

Exercises

1. Change MaxVariablesDemo to show minimum values instead of maximum values.

You can delete all code related to the variables aChar and aBoolean. What is the

output?

2. Create a program that reads an unspecified number of integer arguments from the

command line and adds them together. For example, suppose that you enter the

following:

java Adder 1 3 2 10

The program should display 16 and then exit. The program should display an error

message if the user enters only one argument. You can base your program on

ValueOfDemo.

3. Create a program that is similar to the previous one but has the following differences:

 Instead of reading integer arguments, it reads floating-point arguments.

 It displays the sum of the arguments, using exactly two digits to the right of the

decimal point.

For example, suppose that you enter the following:

java FPAdder 1 1e2 3.0 4.754

The program would display 108.75. Depending on your locale, the decimal point might

be a comma (,) instead of a period (.).

http://java.sun.com/docs/books/tutorial/java/data/QandE/MaxVariablesDemo.java
http://java.sun.com/docs/books/tutorial/java/data/examples/ValueOfDemo.java

 - 163 -

Characters

Most of the time, if you are using a single character value, you will use the primitive

char type. For example:

char ch = 'a';

char uniChar = '\u039A'; // Unicode for uppercase Greek omega

character

char[] charArray ={ 'a', 'b', 'c', 'd', 'e' }; // an array of chars

There are times, however, when you need to use a char as an object—for example, as a

method argument where an object is expected. The Java programming language

provides a wrapper class that "wraps" the char in a Character object for this purpose.

An object of type Character contains a single field, whose type is char. This

Character class also offers a number of useful class (i.e., static) methods for

manipulating characters.

You can create a Character object with the Character constructor:

Character ch = new Character('a');

The Java compiler will also create a Character object for you under some

circumstances. For example, if you pass a primitive char into a method that expects an

object, the compiler automatically converts the char to a Character for you. This

feature is called autoboxing—or unboxing, if the conversion goes the other way.

Here is an example of boxing,

Character ch = 'a'; // the primitive char 'a' is boxed into the

Character object ch

and here is an example of both boxing and unboxing,
Character test(Character c) {...} // method parameter and return type

= Character object

char c = test('x'); // primitive 'x' is boxed for method test, return

is unboxed to char 'c'

Note: The Character class is immutable, so that once it is created, a Character object

cannot be changed.

The following table lists some of the most useful methods in the Character class, but is

not exhaustive. For a complete listing of all methods in this class (there are more than

50), refer to the java.lang.Character API specification.

Useful Methods in the Character Class

Method Description

boolean

isLetter(char ch)

Determines whether the specified char value is a letter or a

digit, respectively.

http://java.sun.com/javase/6/docs/api/java/lang/Character.html
http://java.sun.com/javase/6/docs/api/java/lang/Character.html

 - 164 -

boolean isDigit(char

ch)

boolean

isWhitespace(char

ch)
Determines whether the specified char value is white space.

boolean

isUpperCase(char ch)

boolean

isLowerCase(char ch)

Determines whether the specified char value is uppercase or

lowercase, respectively.

char

toUpperCase(char ch)

char

toLowerCase(char ch)

Returns the uppercase or lowercase form of the specified

char value.

toString(char ch)
Returns a String object representing the specified character

value—that is, a one-character string.

Escape Sequences

A character preceded by a backslash (\) is an escape sequence and has special meaning

to the compiler. The newline character (\n) has been used frequently in this tutorial in

System.out.println() statements to advance to the next line after the string is

printed. The following table shows the Java escape sequences:

Escape Sequences

Escape

Sequence
Description

\t
Insert a tab in the text at this

point.

\b
Insert a backspace in the text

at this point.

\n
Insert a newline in the text at

this point.

\r
Insert a carriage return in the

text at this point.

\f
Insert a formfeed in the text

at this point.

\'
Insert a single quote

character in the text at this

point.

\"
Insert a double quote

character in the text at this

point.

 - 165 -

\\
Insert a backslash character

in the text at this point.

When an escape sequence is encountered in a print statement, the compiler interprets it

accordingly. For example, if you want to put quotes within quotes you must use the

escape sequence, \", on the interior quotes. To print the sentence

She said "Hello!" to me.

you would write
System.out.println("She said \"Hello!\" to me.");

 - 166 -

Strings

Strings, which are widely used in Java programming, are a sequence of characters. In

the Java programming language, strings are objects.

The Java platform provides the String class to create and manipulate strings.

Creating Strings

The most direct way to create a string is to write:

String greeting = "Hello world!";

In this case, "Hello world!" is a string literal—a series of characters in your code that is

enclosed in double quotes. Whenever it encounters a string literal in your code, the

compiler creates a String object with its value—in this case, Hello world!.

As with any other object, you can create String objects by using the new keyword and

a constructor. The String class has 11 constructors that allow you to provide the initial

value of the string using different sources, such as an array of characters:

char[] helloArray = { 'h', 'e', 'l', 'l', 'o', '.'};

String helloString = new String(helloArray);

System.out.println(helloString);

The last line of this code snippet displays hello.

Note: The String class is immutable, so that once it is created a String object cannot

be changed. The String class has a number of methods, some of which will be

discussed below, that appear to modify strings. Since strings are immutable, what these

methods really do is create and return a new string that contains the result of the

operation.

String Length

Methods used to obtain information about an object are known as accessor methods.

One accessor method that you can use with strings is the length() method, which

returns the number of characters contained in the string object. After the following two

lines of code have been executed, len equals 17:

String palindrome = "Dot saw I was Tod";

int len = palindrome.length();

A palindrome is a word or sentence that is symmetric—it is spelled the same forward

and backward, ignoring case and punctuation. Here is a short and inefficient program to

reverse a palindrome string. It invokes the String method charAt(i), which returns

the ith character in the string, counting from 0.

public class StringDemo {

http://java.sun.com/javase/6/docs/api/java/lang/String.html

 - 167 -

 public static void main(String[] args) {

 String palindrome = "Dot saw I was Tod";

 int len = palindrome.length();

 char[] tempCharArray = new char[len];

 char[] charArray = new char[len];

 // put original string in an array of chars

 for (int i = 0; i < len; i++) {

 tempCharArray[i] = palindrome.charAt(i);

 }

 // reverse array of chars

 for (int j = 0; j < len; j++) {

 charArray[j] = tempCharArray[len - 1 - j];

 }

 String reversePalindrome = new String(charArray);

 System.out.println(reversePalindrome);

 }

}

Running the program produces this output:
doT saw I was toD

To accomplish the string reversal, the program had to convert the string to an array of

characters (first for loop), reverse the array into a second array (second for loop), and

then convert back to a string. The String class includes a method, getChars(), to

convert a string, or a portion of a string, into an array of characters so we could replace

the first for loop in the program above with

palindrome.getChars(0, len, tempCharArray, 0);

Concatenating Strings

The String class includes a method for concatenating two strings:

string1.concat(string2);

This returns a new string that is string1 with string2 added to it at the end.

You can also use the concat() method with string literals, as in:

"My name is ".concat("Rumplestiltskin");

Strings are more commonly concatenated with the + operator, as in

"Hello," + " world" + "!"

which results in

"Hello, world!"

The + operator is widely used in print statements. For example:

String string1 = "saw I was ";

System.out.println("Dot " + string1 + "Tod");

http://java.sun.com/javase/6/docs/api/java/lang/String.html

 - 168 -

which prints

Dot saw I was Tod

Such a concatenation can be a mixture of any objects. For each object that is not a

String, its toString() method is called to convert it to a String.

Note: The Java programming language does not permit literal strings to span lines in

source files, so you must use the + concatenation operator at the end of each line in a

multi-line string. For example,
String quote = "Now is the time for all good " +

 "men to come to the aid of their country.";

Breaking strings between lines using the + concatenation operator is, once again, very

common in print statements.

Creating Format Strings

You have seen the use of the printf() and format() methods to print output with

formatted numbers. The String class has an equivalent class method, format(), that

returns a String object rather than a PrintStream object.

Using String's static format() method allows you to create a formatted string that

you can reuse, as opposed to a one-time print statement. For example, instead of

System.out.printf("The value of the float variable is %f, while the

value of the " +

 "integer variable is %d, and the string is %s",

floatVar, intVar, stringVar);

you can write
String fs;

fs = String.format("The value of the float variable is %f, while the

value of the " +

 "integer variable is %d, and the string is %s",

floatVar, intVar, stringVar);

System.out.println(fs);

 - 169 -

Converting Between Numbers and Strings

Converting Strings to Numbers

Frequently, a program ends up with numeric data in a string object—a value entered by

the user, for example.

The Number subclasses that wrap primitive numeric types (Byte, Integer, Double,

Float, Long, and Short) each provide a class method named valueOf that converts a

string to an object of that type. Here is an example, ValueOfDemo , that gets two strings

from the command line, converts them to numbers, and performs arithmetic operations

on the values:

public class ValueOfDemo {

 public static void main(String[] args) {

 //this program requires two arguments on the command line

 if (args.length == 2) {

 //convert strings to numbers

 float a = (Float.valueOf(args[0])).floatValue();

 float b = (Float.valueOf(args[1])).floatValue();

 //do some arithmetic

 System.out.println("a + b = " + (a + b));

 System.out.println("a - b = " + (a - b));

 System.out.println("a * b = " + (a * b));

 System.out.println("a / b = " + (a / b));

 System.out.println("a % b = " + (a % b));

 } else {

 System.out.println("This program requires two command-line

arguments.");

 }

 }

}

The following is the output from the program when you use 4.5 and 87.2 for the

command-line arguments:

a + b = 91.7

a - b = -82.7

a * b = 392.4

a / b = 0.0516055

a % b = 4.5

Note: Each of the Number subclasses that wrap primitive numeric types also provides a

parseXXXX() method (for example, parseFloat()) that can be used to convert strings

to primitive numbers. Since a primitive type is returned instead of an object, the

parseFloat() method is more direct than the valueOf() method. For example, in the

ValueOfDemo program, we could use:
float a = Float.parseFloat(args[0]);

float b = Float.parseFloat(args[1]);

http://java.sun.com/javase/6/docs/api/java/lang/Byte.html
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html
http://java.sun.com/javase/6/docs/api/java/lang/Double.html
http://java.sun.com/javase/6/docs/api/java/lang/Float.html
http://java.sun.com/javase/6/docs/api/java/lang/Long.html
http://java.sun.com/javase/6/docs/api/java/lang/Short.html
http://java.sun.com/docs/books/tutorial/java/data/examples/ValueOfDemo.java

 - 170 -

Converting Numbers to Strings

Sometimes you need to convert a number to a string because you need to operate on the

value in its string form. There are several easy ways to convert a number to a string:

int i;

String s1 = "" + i; //Concatenate "i" with an empty string;

 //conversion is handled for you.

or
String s2 = String.valueOf(i); //The valueOf class method.

Each of the Number subclasses includes a class method, toString(), that will convert

its primitive type to a string. For example:

int i;

double d;

String s3 = Integer.toString(i);

String s4 = Double.toString(d);

The ToStringDemo example uses the toString method to convert a number to a string.

The program then uses some string methods to compute the number of digits before and

after the decimal point:

public class ToStringDemo {

 public static void main(String[] args) {

 double d = 858.48;

 String s = Double.toString(d);

 int dot = s.indexOf('.');

 System.out.println(dot + " digits before decimal point.");

 System.out.println((s.length() - dot - 1) +

 " digits after decimal point.");

 }

}

The output of this program is:

3 digits before decimal point.

2 digits after decimal point.

http://java.sun.com/docs/books/tutorial/java/data/examples/ToStringDemo.java

 - 171 -

Manipulating Characters in a String

The String class has a number of methods for examining the contents of strings,

finding characters or substrings within a string, changing case, and other tasks.

Getting Characters and Substrings by Index

You can get the character at a particular index within a string by invoking the charAt()

accessor method. The index of the first character is 0, while the index of the last

character is length()-1. For example, the following code gets the character at index 9

in a string:

String anotherPalindrome = "Niagara. O roar again!";

char aChar = anotherPalindrome.charAt(9);

Indices begin at 0, so the character at index 9 is 'O', as illustrated in the following

figure:

If you want to get more than one consecutive character from a string, you can use the

substring method. The substring method has two versions, as shown in the

following table:

The substring Methods in the String Class

Method Description

String substring(int

beginIndex, int endIndex)

Returns a new string that is a substring of this

string. The first integer argument specifies the

index of the first character. The second integer

argument is the index of the last character + 1.

String substring(int

beginIndex)

Returns a new string that is a substring of this

string. The integer argument specifies the index of

the first character. Here, the returned substring

extends to the end of the original string.

The following code gets from the Niagara palindrome the substring that extends from

index 11 up to, but not including, index 15, which is the word "roar":

String anotherPalindrome = "Niagara. O roar again!";

String roar = anotherPalindrome.substring(11, 15);

 - 172 -

Other Methods for Manipulating Strings

Here are several other String methods for manipulating strings:

Other Methods in the String Class for Manipulating Strings

Method Description

String[] split(String regex)
String[] split(String regex, int

limit)

Searches for a match as specified by the

string argument (which contains a regular

expression) and splits this string into an

array of strings accordingly. The optional

integer argument specifies the maximum

size of the returned array. Regular

expressions are covered in the lesson titled

"Regular Expressions."

CharSequence subSequence(int

beginIndex, int endIndex)

Returns a new character sequence

constructed from beginIndex index up

until endIndex - 1.

String trim()
Returns a copy of this string with leading

and trailing white space removed.

String toLowerCase()

String toUpperCase()

Returns a copy of this string converted to

lowercase or uppercase. If no conversions

are necessary, these methods return the

original string.

Searching for Characters and Substrings in a String

Here are some other String methods for finding characters or substrings within a

string. The String class provides accessor methods that return the position within the

string of a specific character or substring: indexOf() and lastIndexOf(). The

indexOf() methods search forward from the beginning of the string, and the

lastIndexOf() methods search backward from the end of the string. If a character or

substring is not found, indexOf() and lastIndexOf() return -1.

The String class also provides a search method, contains, that returns true if the

string contains a particular character sequence. Use this method when you only need to

know that the string contains a character sequence, but the precise location isn't

important.

The following table describes the various string search methods.

 - 173 -

The Search Methods in the String Class

Method Description

int indexOf(int ch)

int lastIndexOf(int ch)
Returns the index of the first (last)

occurrence of the specified character.

int indexOf(int ch, int fromIndex)

int lastIndexOf(int ch, int

fromIndex)

Returns the index of the first (last)

occurrence of the specified character,

searching forward (backward) from the

specified index.

int indexOf(String str)

int lastIndexOf(String str)
Returns the index of the first (last)

occurrence of the specified substring.

int indexOf(String str, int

fromIndex)

int lastIndexOf(String str, int

fromIndex)

Returns the index of the first (last)

occurrence of the specified substring,

searching forward (backward) from the

specified index.

boolean contains(CharSequence s)
Returns true if the string contains the

specified character sequence.

Note: CharSequence is an interface that is implemented by the String class.

Therefore, you can use a string as an argument for the contains() method.

Replacing Characters and Substrings into a String

The String class has very few methods for inserting characters or substrings into a

string. In general, they are not needed: You can create a new string by concatenation of

substrings you have removed from a string with the substring that you want to insert.

The String class does have four methods for replacing found characters or substrings,

however. They are:

Methods in the String Class for Manipulating Strings

Method Description

String replace(char oldChar, char

newChar)

Returns a new string resulting from

replacing all occurrences of oldChar in

this string with newChar.

String replace(CharSequence

target, CharSequence replacement)

Replaces each substring of this string that

matches the literal target sequence with

the specified literal replacement sequence.

String replaceAll(String regex,

String replacement)
Replaces each substring of this string that

matches the given regular expression with

 - 174 -

the given replacement.

String replaceFirst(String regex,

String replacement)

Replaces the first substring of this string

that matches the given regular expression

with the given replacement.

An Example

The following class, Filename, illustrates the use of lastIndexOf() and substring()

to isolate different parts of a file name.

Note: The methods in the following Filename class don't do any error checking and

assume that their argument contains a full directory path and a filename with an

extension. If these methods were production code, they would verify that their

arguments were properly constructed.

public class Filename {

 private String fullPath;

 private char pathSeparator, extensionSeparator;

 public Filename(String str, char sep, char ext) {

 fullPath = str;

 pathSeparator = sep;

 extensionSeparator = ext;

 }

 public String extension() {

 int dot = fullPath.lastIndexOf(extensionSeparator);

 return fullPath.substring(dot + 1);

 }

 public String filename() { // gets filename without extension

 int dot = fullPath.lastIndexOf(extensionSeparator);

 int sep = fullPath.lastIndexOf(pathSeparator);

 return fullPath.substring(sep + 1, dot);

 }

 public String path() {

 int sep = fullPath.lastIndexOf(pathSeparator);

 return fullPath.substring(0, sep);

 }

}

Here is a program, FilenameDemo, that constructs a Filename object and calls all of its

methods:

public class FilenameDemo {

 public static void main(String[] args) {

 final String FPATH = "/home/mem/index.html";

 Filename myHomePage = new Filename(FPATH,

 '/', '.');

 System.out.println("Extension = " +

 myHomePage.extension());

 System.out.println("Filename = " +

http://java.sun.com/docs/books/tutorial/java/data/examples/Filename.java
http://java.sun.com/docs/books/tutorial/java/data/examples/FilenameDemo.java

 - 175 -

 myHomePage.filename());

 System.out.println("Path = " +

 myHomePage.path());

 }

}

And here's the output from the program:

Extension = html

Filename = index

Path = /home/mem

As shown in the following figure, our extension method uses lastIndexOf to locate

the last occurrence of the period (.) in the file name. Then substring uses the return

value of lastIndexOf to extract the file name extension — that is, the substring from

the period to the end of the string. This code assumes that the file name has a period in

it; if the file name does not have a period, lastIndexOf returns -1, and the substring

method throws a StringIndexOutOfBoundsException.

Also, notice that the extension method uses dot + 1 as the argument to substring. If

the period character (.) is the last character of the string, dot + 1 is equal to the length

of the string, which is one larger than the largest index into the string (because indices

start at 0). This is a legal argument to substring because that method accepts an index

equal to, but not greater than, the length of the string and interprets it to mean "the end

of the string."

 - 176 -

Comparing Strings and Portions of Strings

The String class has a number of methods for comparing strings and portions of

strings. The following table lists these methods.

Methods for Comparing Strings

Method Description

boolean endsWith(String suffix)

boolean startsWith(String prefix)

Returns true if this string ends with or

begins with the substring specified as an

argument to the method.

boolean startsWith(String prefix,

int offset)

Considers the string beginning at the index

offset, and returns true if it begins with

the substring specified as an argument.

int compareTo(String

anotherString)

Compares two strings lexicographically.

Returns an integer indicating whether this

string is greater than (result is > 0), equal

to (result is = 0), or less than (result is < 0)

the argument.

int compareToIgnoreCase(String

str)

Compares two strings lexicographically,

ignoring differences in case. Returns an

integer indicating whether this string is

greater than (result is > 0), equal to (result

is = 0), or less than (result is < 0) the

argument.

boolean equals(Object anObject)
Returns true if and only if the argument is

a String object that represents the same

sequence of characters as this object.

boolean equalsIgnoreCase(String

anotherString)

Returns true if and only if the argument is

a String object that represents the same

sequence of characters as this object,

ignoring differences in case.

boolean regionMatches(int toffset,

String other, int ooffset, int

len)

Tests whether the specified region of this

string matches the specified region of the

String argument.

Region is of length len and begins at the

index toffset for this string and ooffset

for the other string.

boolean regionMatches(boolean

ignoreCase, int toffset, String

other, int ooffset, int len)

Tests whether the specified region of this

string matches the specified region of the

String argument.

Region is of length len and begins at the

 - 177 -

index toffset for this string and ooffset

for the other string.

The boolean argument indicates whether

case should be ignored; if true, case is

ignored when comparing characters.

boolean matches(String regex)

Tests whether this string matches the

specified regular expression. Regular

expressions are discussed in the lesson

titled "Regular Expressions."

The following program, RegionMatchesDemo, uses the regionMatches method to

search for a string within another string:

public class RegionMatchesDemo {

 public static void main(String[] args) {

 String searchMe = "Green Eggs and Ham";

 String findMe = "Eggs";

 int searchMeLength = searchMe.length();

 int findMeLength = findMe.length();

 boolean foundIt = false;

 for (int i = 0; i <= (searchMeLength - findMeLength);

i++) {

 if (searchMe.regionMatches(i, findMe, 0,

findMeLength)) {

 foundIt = true;

 System.out.println(searchMe.substring(i, i +

findMeLength));

 break;

 }

 }

 if (!foundIt) System.out.println("No match found.");

 }

}

The output from this program is Eggs.

The program steps through the string referred to by searchMe one character at a time.

For each character, the program calls the regionMatches method to determine whether

the substring beginning with the current character matches the string the program is

looking for.

 - 178 -

The StringBuilder Class

StringBuilder objects are like String objects, except that they can be modified.

Internally, these objects are treated like variable-length arrays that contain a sequence of

characters. At any point, the length and content of the sequence can be changed through

method invocations.

Strings should always be used unless string builders offer an advantage in terms of

simpler code (see the sample program at the end of this section) or better performance.

For example, if you need to concatenate a large number of strings, appending to a

StringBuilder object is more efficient.

Length and Capacity

The StringBuilder class, like the String class, has a length() method that returns

the length of the character sequence in the builder.

Unlike strings, every string builder also has a capacity, the number of character spaces

that have been allocated. The capacity, which is returned by the capacity() method, is

always greater than or equal to the length (usually greater than) and will automatically

expand as necessary to accommodate additions to the string builder.

StringBuilder Constructors

Constructor Description

StringBuilder()
Creates an empty string builder with a

capacity of 16 (16 empty elements).

StringBuilder(CharSequence cs)

Constructs a string builder containing the

same characters as the specified

CharSequence, plus an extra 16 empty

elements trailing the CharSequence.

StringBuilder(int initCapacity)
Creates an empty string builder with the

specified initial capacity.

StringBuilder(String s)
Creates a string builder whose value is

initialized by the specified string, plus an

extra 16 empty elements trailing the string.

For example, the following code

StringBuilder sb = new StringBuilder(); // creates empty builder,

capacity 16

sb.append("Greetings"); // adds 9 character string at beginning

will produce a string builder with a length of 9 and a capacity of 16:

http://java.sun.com/javase/6/docs/api/java/lang/StringBuilder.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html

 - 179 -

The StringBuilder class has some methods related to length and capacity that the

String class does not have:

Length and Capacity Methods

Method Description

void setLength(int newLength)

Sets the length of the character sequence.

If newLength is less than length(), the

last characters in the character sequence

are truncated. If newLength is greater than

length(), null characters are added at the

end of the character sequence.

void ensureCapacity(int

minCapacity)
Ensures that the capacity is at least equal

to the specified minimum.

A number of operations (for example, append(), insert(), or setLength()) can

increase the length of the character sequence in the string builder so that the resultant

length() would be greater than the current capacity(). When this happens, the

capacity is automatically increased.

StringBuilder Operations

The principal operations on a StringBuilder that are not available in String are the

append() and insert() methods, which are overloaded so as to accept data of any

type. Each converts its argument to a string and then appends or inserts the characters of

that string to the character sequence in the string builder. The append method always

adds these characters at the end of the existing character sequence, while the insert

method adds the characters at a specified point.

Here are a number of the methods of the StringBuilder class.

Various StringBuilder Methods

Method Description

StringBuilder append(boolean b)

StringBuilder append(char c)

StringBuilder append(char[] str)

StringBuilder append(char[] str,

int offset, int len)

StringBuilder append(double d)

StringBuilder append(float f)

Appends the argument to this string

builder. The data is converted to a string

before the append operation takes place.

 - 180 -

StringBuilder append(int i)

StringBuilder append(long lng)

StringBuilder append(Object obj)

StringBuilder append(String s)

StringBuilder delete(int start,

int end)

StringBuilder deleteCharAt(int

index)

Deletes the specified character(s) in this

string builder.

StringBuilder insert(int offset,

boolean b)

StringBuilder insert(int offset,

char c)

StringBuilder insert(int offset,

char[] str)

StringBuilder insert(int index,

char[] str, int offset, int len)

StringBuilder insert(int offset,

double d)

StringBuilder insert(int offset,

float f)

StringBuilder insert(int offset,

int i)

StringBuilder insert(int offset,

long lng)

StringBuilder insert(int offset,

Object obj)

StringBuilder insert(int offset,

String s)

Inserts the second argument into the string

builder. The first integer argument

indicates the index before which the data

is to be inserted. The data is converted to a

string before the insert operation takes

place.

StringBuilder replace(int start,

int end, String s)

void setCharAt(int index, char c)

Replaces the specified character(s) in this

string builder.

StringBuilder reverse()
Reverses the sequence of characters in this

string builder.

String toString()
Returns a string that contains the character

sequence in the builder.

Note: You can use any String method on a StringBuilder object by first converting

the string builder to a string with the toString() method of the StringBuilder class.

Then convert the string back into a string builder using the StringBuilder(String

str) constructor.

An Example

The StringDemo program that was listed in the section titled "Strings" is an example of

a program that would be more efficient if a StringBuilder were used instead of a

String.

StringDemo reversed a palindrome. Here, once again, is its listing:

 - 181 -

public class StringDemo {

 public static void main(String[] args) {

 String palindrome = "Dot saw I was Tod";

 int len = palindrome.length();

 char[] tempCharArray = new char[len];

 char[] charArray = new char[len];

 // put original string in an array of chars

 for (int i = 0; i < len; i++) {

 tempCharArray[i] = palindrome.charAt(i);

 }

 // reverse array of chars

 for (int j = 0; j < len; j++) {

 charArray[j] = tempCharArray[len - 1 - j];

 }

 String reversePalindrome = new String(charArray);

 System.out.println(reversePalindrome);

 }

}

Running the program produces this output:

doT saw I was toD

To accomplish the string reversal, the program converts the string to an array of

characters (first for loop), reverses the array into a second array (second for loop), and

then converts back to a string.

If you convert the palindrome string to a string builder, you can use the reverse()

method in the StringBuilder class. It makes the code simpler and easier to read:

public class StringBuilderDemo {

 public static void main(String[] args) {

 String palindrome = "Dot saw I was Tod";

 StringBuilder sb = new StringBuilder(palindrome);

 sb.reverse(); // reverse it

 System.out.println(sb);

 }

}

Running this program produces the same output:

doT saw I was toD

Note that println() prints a string builder, as in:

System.out.println(sb);

because sb.toString() is called implicitly, as it is with any other object in a

println() invocation.

 - 182 -

Note: There is also a StringBuffer class that is exactly the same as the

StringBuilder class, except that it is thread-safe by virtue of having its methods

synchronized. Threads will be discussed in the lesson on concurrency.

 - 183 -

Summary of Characters and Strings

Most of the time, if you are using a single character value, you will use the primitive

char type. There are times, however, when you need to use a char as an object—for

example, as a method argument where an object is expected. The Java programming

language provides a wrapper class that "wraps" the char in a Character object for this

purpose. An object of type Character contains a single field whose type is char. This

Character class also offers a number of useful class (i.e., static) methods for

manipulating characters.

Strings are a sequence of characters and are widely used in Java programming. In the

Java programming language, strings are objects. The String class has over 60 methods

and 13 constructors.

Most commonly, you create a string with a statement like

String s = "Hello world!";

rather than using one of the String constructors.

The String class has many methods to find and retrieve substrings; these can then be

easily reassembled into new strings using the + concatenation operator.

The String class also includes a number of utility methods, among them split(),

toLowerCase(), toUpperCase(), and valueOf(). The latter method is indispensable

in converting user input strings to numbers. The Number subclasses also have methods

for converting strings to numbers and vice versa.

In addition to the String class, there is also a StringBuilder class. Working with

StringBuilder objects can sometimes be more efficient than working with strings. The

StringBuilder class offers a few methods that can be useful for strings, among them

reverse(). In general, however, the String class has a wider variety of methods.

A string can be converted to a string builder using a StringBuilder constructor. A

string builder can be converted to a string with the toString() method.

http://java.sun.com/javase/6/docs/api/java/lang/Character.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/StringBuilder.html

 - 184 -

Questions and Exercises: Characters and Strings

Questions

1. What is the initial capacity of the following string builder?

StringBuilder sb = new StringBuilder("Able was I ere I saw

Elba.");

2. Consider the following string:

String hannah = "Did Hannah see bees? Hannah did.";

What is the value displayed by the expression hannah.length()?

What is the value returned by the method call hannah.charAt(12)?

Write an expression that refers to the letter b in the string referred to by hannah.

3. How long is the string returned by the following expression? What is the string?

"Was it a car or a cat I saw?".substring(9, 12)

4. In the following program, called ComputeResult, what is the value of result

after each numbered line executes?

public class ComputeResult {

 public static void main(String[] args) {

 String original = "software";

 StringBuilder result = new StringBuilder("hi");

 int index = original.indexOf('a');

 System.out.println(result);

 }

}

Exercises

1. Show two ways to concatenate the following two strings together to get the

string "Hi, mom.":

String hi = "Hi, ";

String mom = "mom.";

2. Write a program that computes your initials from your full name and displays

them.

3. An anagram is a word or a phrase made by transposing the letters of another

word or phrase; for example, "parliament" is an anagram of "partial men," and

"software" is an anagram of "swear oft." Write a program that figures out

whether one string is an anagram of another string. The program should ignore

white space and punctuation.

http://java.sun.com/docs/books/tutorial/java/data/QandE/ComputeResult.java

 - 185 -

Lesson: Generics

Generics are a built-in language feature that will make your software more reliable. This

lesson discusses the following topics:

Introduction

This section explains some common shortcomings associated with non-generic code.

Specifically, it shows how certain kinds of bugs will crash an application at runtime,

since they are not detectable by the compiler.

Generic Types

This section explains generic type declarations, type variables, type parameters, and

type arguments. It also describes the naming conventions that are specific to generics.

Generic Methods and Constructors

This section shows how type parameters can be used to define generic methods and

constructors.

Bounded Type Parameters

This section describes how type parameters can specify an upper bound that limits the

kind of types that can be passed in.

Subtyping

This section describes how generic subtyping differs from non-generic subtyping.

Wildcards

This section continues the discussion of subtyping by describing bounded and

unbounded wildcards.

Type Erasure

This section describes type erasure, raw types, and unchecked warnings.

http://java.sun.com/docs/books/tutorial/java/generics/generics.html
http://java.sun.com/docs/books/tutorial/java/generics/gentypes.html
http://java.sun.com/docs/books/tutorial/java/generics/genmethods.html
http://java.sun.com/docs/books/tutorial/java/generics/bounded.html
http://java.sun.com/docs/books/tutorial/java/generics/subtyping.html
http://java.sun.com/docs/books/tutorial/java/generics/wildcards.html
http://java.sun.com/docs/books/tutorial/java/generics/erasure.html

 - 186 -

Introduction

In any nontrivial software project, bugs are simply a fact of life. Careful planning,

programming, and testing can help reduce their pervasiveness, but somehow,

somewhere, they'll always find a way to creep into your code. This becomes especially

apparent as new features are introduced and your code base grows in size and

complexity.

Fortunately, some bugs are easier to detect than others. Compile-time bugs, for

example, tell you immediately that something is wrong; you can use the compiler's error

messages to figure out what the problem is and fix it, right then and there. Runtime

bugs, however, can be much more problematic; they don't always surface immediately,

and when they do, it may be at a point in time that's far removed from the actual cause

of the problem.

Generics add stability to your code by making more of your bugs detectable at compile

time. Some programmers choose to learn generics by studying the Java Collections

Framework; after all, generics are heavily used by those classes. However, since we

haven't yet covered collections, this chapter will focus primarily on simple "collections-

like" examples that we'll design from scratch. This hands-on approach will teach you

the necessary syntax and terminology while demonstrating the various kinds of

problems that generics were designed to solve.

A Simple Box Class

Let's begin by designing a nongeneric Box class that operates on objects of any type. It

need only provide two methods: add, which adds an object to the box, and get, which

retrieves it:

 public class Box {

 private Object object;

 public void add(Object object) {

 this.object = object;

 }

 public Object get() {

 return object;

 }

 }

Since its methods accept or return Object, you're free to pass in whatever you want,

provided that it's not one of the primitive types. However, should you need to restrict

the contained type to something specific (like Integer), your only option would be to

specify the requirement in documentation (or in this case, a comment), which of course

the compiler knows nothing about:

public class BoxDemo1 {

 public static void main(String[] args) {

 // ONLY place Integer objects into this box!

 - 187 -

 Box integerBox = new Box();

 integerBox.add(new Integer(10));

 Integer someInteger = (Integer)integerBox.get();

 System.out.println(someInteger);

 }

}

The BoxDemo1 program creates an Integer object, passes it to add, then assigns that

same object to someInteger by the return value of get. It then prints the object's value

(10) to standard output. We know that the cast from Object to Integer is correct

because we've honored the "contract" specified in the comment. But remember, the

compiler knows nothing about this — it just trusts that our cast is correct. Furthermore,

it will do nothing to prevent a careless programmer from passing in an object of the

wrong type, such as String:

public class BoxDemo2 {

 public static void main(String[] args) {

 // ONLY place Integer objects into this box!

 Box integerBox = new Box();

 // Imagine this is one part of a large application

 // modified by one programmer.

 integerBox.add("10"); // note how the type is now String

 // ... and this is another, perhaps written

 // by a different programmer

 Integer someInteger = (Integer)integerBox.get();

 System.out.println(someInteger);

 }

}

In BoxDemo2 we've stored the number 10 as a String, which could be the case when,

say, a GUI collects input from the user. However, the existing cast from Object to

Integer has mistakenly been overlooked. This is clearly a bug, but because the code

still compiles, you wouldn't know anything is wrong until runtime, when the application

crashes with a ClassCastException:

 Exception in thread "main"

 java.lang.ClassCastException:

 java.lang.String cannot be cast to java.lang.Integer

 at BoxDemo2.main(BoxDemo2.java:6)

If the Box class had been designed with generics in mind, this mistake would have been

caught by the compiler, instead of crashing the application at runtime.

http://java.sun.com/docs/books/tutorial/java/generics/examples/BoxDemo1.java
http://java.sun.com/docs/books/tutorial/java/generics/examples/BoxDemo2.java

 - 188 -

Generic Types

Let's update our Box class to use generics. We'll first create a generic type declaration

by changing the code "public class Box" to "public class Box<T>"; this

introduces one type variable, named T, that can be used anywhere inside the class. This

same technique can be applied to interfaces as well. There's nothing particularly

complex about this concept. In fact, it's quite similar to what you already know about

variables in general. Just think of T as a special kind of variable, whose "value" will be

whatever type you pass in; this can be any class type, any interface type, or even another

type variable. It just can't be any of the primitive data types. In this context, we also say

that T is a formal type parameter of the Box class.

/**

 * Generic version of the Box class.

 */

public class Box<T> {

 private T t; // T stands for "Type"

 public void add(T t) {

 this.t = t;

 }

 public T get() {

 return t;

 }

}

As you can see, we've replaced all occurrences of Object with T. To reference this

generic class from within your own code, you must perform a generic type invocation,

which replaces T with some concrete value, such as Integer:

Box<Integer> integerBox;

You can think of a generic type invocation as being similar to an ordinary method

invocation, but instead of passing an argument to a method, you're passing a type

argument — Integer in this case — to the Box class itself. Like any other variable

declaration, this code does not actually create a new Box object. It simply declares that

integerBox will hold a reference to a "Box of Integer", which is how Box<Integer>

is read.

An invocation of a generic type is generally known as a parameterized type.

To instantiate this class, use the new keyword, as usual, but place <Integer> between

the class name and the parenthesis:

integerBox = new Box<Integer>();

Or, you can put the entire statement on one line, such as:

Box<Integer> integerBox = new Box<Integer>();

Once integerBox is initialized, you're free to invoke its get method without providing

a cast, as in BoxDemo3:

http://java.sun.com/docs/books/tutorial/java/generics/examples/BoxDemo3.java

 - 189 -

public class BoxDemo3 {

 public static void main(String[] args) {

 Box<Integer> integerBox = new Box<Integer>();

 integerBox.add(new Integer(10));

 Integer someInteger = integerBox.get(); // no cast!

 System.out.println(someInteger);

 }

}

Furthermore, if you try adding an incompatible type to the box, such as String,

compilation will fail, alerting you to what previously would have been a runtime bug:
 BoxDemo3.java:5: add(java.lang.Integer) in Box<java.lang.Integer>

 cannot be applied to (java.lang.String)

 integerBox.add("10");

 ^

 1 error

It's important to understand that type variables are not actually types themselves. In the

above examples, you won't find T.java or T.class anywhere on the filesystem.

Furthermore, T is not a part of the Box class name. In fact during compilation, all

generic information will be removed entirely, leaving only Box.class on the

filesystem. We'll discuss this later in the section on Type Erasure

Also note that a generic type may have multiple type parameters, but each parameter

must be unique within its declaring class or interface. A declaration of Box<T,T>, for

example, would generate an error on the second occurrence of T, but Box<T,U>,

however, would be allowed.

Type Parameter Naming Conventions

By convention, type parameter names are single, uppercase letters. This stands in sharp

contrast to the variable naming conventions that you already know about, and with good

reason: Without this convention, it would be difficult to tell the difference between a

type variable and an ordinary class or interface name.

The most commonly used type parameter names are:

 E - Element (used extensively by the Java Collections Framework)

 K - Key

 N - Number

 T - Type

 V - Value

 S,U,V etc. - 2nd, 3rd, 4th types

You'll see these names used throughout the Java SE API and the rest of this tutorial.

http://java.sun.com/docs/books/tutorial/java/generics/erasure.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/variables.html#naming

 - 190 -

Generic Methods and Constructors

Type parameters can also be declared within method and constructor signatures to

create generic methods and generic constructors. This is similar to declaring a generic

type, but the type parameter's scope is limited to the method or constructor in which it's

declared.

/**

 * This version introduces a generic method.

 */

public class Box<T> {

 private T t;

 public void add(T t) {

 this.t = t;

 }

 public T get() {

 return t;

 }

 public <U> void inspect(U u){

 System.out.println("T: " + t.getClass().getName());

 System.out.println("U: " + u.getClass().getName());

 }

 public static void main(String[] args) {

 Box<Integer> integerBox = new Box<Integer>();

 integerBox.add(new Integer(10));

 integerBox.inspect("some text");

 }

}

Here we've added one generic method, named inspect, that defines one type

parameter, named U. This method accepts an object and prints its type to standard

output. For comparison, it also prints out the type of T. For convenience, this class now

also has a main method so that it can be run as an application.

The output from this program is:

T: java.lang.Integer

U: java.lang.String

By passing in different types, the output will change accordingly.

A more realistic use of generic methods might be something like the following, which

defines a static method that stuffs references to a single item into multiple boxes:

 public static <U> void fillBoxes(U u, List<Box<U>> boxes) {

 for (Box<U> box : boxes) {

 box.add(u);

 }

 }

To use this method, your code would look something like the following:

 - 191 -

 Crayon red = ...;

 List<Box<Crayon>> crayonBoxes = ...;

The complete syntax for invoking this method is:

Box.<Crayon>fillBoxes(red, crayonBoxes);

Here we've explicitly provided the type to be used as U, but more often than not, this can

be left out and the compiler will infer the type that's needed:

Box.fillBoxes(red, crayonBoxes); // compiler infers that U is Crayon

This feature, known as type inference, allows you to invoke a generic method as you

would an ordinary method, without specifying a type between angle brackets.

 - 192 -

Bounded Type Parameters

There may be times when you'll want to restrict the kinds of types that are allowed to be

passed to a type parameter. For example, a method that operates on numbers might only

want to accept instances of Number or its subclasses. This is what bounded type

parameters are for.

To declare a bounded type parameter, list the type parameter's name, followed by the

extends keyword, followed by its upper bound, which in this example is Number. Note

that, in this context, extends is used in a general sense to mean either "extends" (as in

classes) or "implements" (as in interfaces).

/**

 * This version introduces a bounded type parameter.

 */

public class Box<T> {

 private T t;

 public void add(T t) {

 this.t = t;

 }

 public T get() {

 return t;

 }

 public <U extends Number> void inspect(U u){

 System.out.println("T: " + t.getClass().getName());

 System.out.println("U: " + u.getClass().getName());

 }

 public static void main(String[] args) {

 Box<Integer> integerBox = new Box<Integer>();

 integerBox.add(new Integer(10));

 integerBox.inspect("some text"); // error: this is still

String!

 }

}

By modifying our generic method to include this bounded type parameter, compilation

will now fail, since our invocation of inspect still includes a String:
Box.java:21: <U>inspect(U) in Box<java.lang.Integer> cannot

 be applied to (java.lang.String)

 integerBox.inspect("10");

 ^

1 error

To specify additional interfaces that must be implemented, use the & character, as in:

<U extends Number & MyInterface>

 - 193 -

Subtyping

As you already know, it's possible to assign an object of one type to an object of another

type provided that the types are compatible. For example, you can assign an Integer to

an Object, since Object is one of Integer's supertypes:

 Object someObject = new Object();

 Integer someInteger = new Integer(10);

 someObject = someInteger; // OK

In object-oriented terminology, this is called an "is a" relationship. Since an Integer is

a kind of Object, the assignment is allowed. But Integer is also a kind of Number, so

the following code is valid as well:

 public void someMethod(Number n){

 // method body omitted

 }

 someMethod(new Integer(10)); // OK

 someMethod(new Double(10.1)); // OK

The same is also true with generics. You can perform a generic type invocation, passing

Number as its type argument, and any subsequent invocation of add will be allowed if

the argument is compatible with Number:

 Box<Number> box = new Box<Number>();

 box.add(new Integer(10)); // OK

 box.add(new Double(10.1)); // OK

Now consider the following method:

 public void boxTest(Box<Number> n){

 // method body omitted

 }

What type of argument does it accept? By looking at its signature, we can see that it

accepts a single argument whose type is Box<Number>. But what exactly does that

mean? Are you allowed to pass in Box<Integer> or Box<Double>, as you might

expect? Surprisingly, the answer is "no", because Box<Integer> and Box<Double> are

not subtypes of Box<Number>.

Understanding why becomes much easier if you think of tangible objects — things you

can actually picture — such as a cage:

 // A cage is a collection of things, with bars to keep them in.

 interface Cage<E> extends Collection<E>;

Note: The Collection interface is the root interface of the collection hierarchy; it

represents a group of objects. Since a cage would be used for holding a collection of

objects (the animals), it makes sense to include it in this example.

 - 194 -

A lion is a kind of animal, so Lion would be a subtype of Animal:

 interface Lion extends Animal {}

 Lion king = ...;

Where we need some animal, we're free to provide a lion:

 Animal a = king;

A lion can of course be put into a lion cage:

 Cage<Lion> lionCage = ...;

 lionCage.add(king);

and a butterfly into a butterfly cage:

 interface Butterfly extends Animal {}

 Butterfly monarch = ...;

 Cage<Butterfly> butterflyCage = ...;

 butterflyCage.add(monarch);

But what about an "animal cage"? English is ambiguous, so to be precise let's assume

we're talking about an "all-animal cage":

 Cage<Animal> animalCage = ...;

This is a cage designed to hold all kinds of animals, mixed together. It must have bars

strong enough to hold in the lions, and spaced closely enough to hold in the butterflies.

Such a cage might not even be feasible to build, but if it is, then:

 animalCage.add(king);

 animalCage.add(monarch);

Since a lion is a kind of animal (Lion is a subtype of Animal), the question then

becomes, "Is a lion cage a kind of animal cage? Is Cage<Lion> a subtype of

Cage<Animal>?". By the above definition of animal cage, the answer must be "no".

This is surprising! But it makes perfect sense when you think about it: A lion cage

cannot be assumed to keep in butterflies, and a butterfly cage cannot be assumed to hold

in lions. Therefore, neither cage can be considered an "all-animal" cage:

 animalCage = lionCage; // compile-time error

 animalCage = butterflyCage; // compile-time error

Without generics, the animals could be placed into the wrong kinds of cages, where it

would be possible for them to escape.

 - 195 -

Wildcards

Earlier we mentioned that English is ambiguous. The phrase "animal cage" can

reasonably mean "all-animal cage", but it also suggests an entirely different concept: a

cage designed not for any kind of animal, but rather for some kind of animal whose type

is unknown. In generics, an unknown type is represented by the wildcard character "?".

To specify a cage capable of holding some kind of animal:

 Cage<? extends Animal> someCage = ...;

Read "? extends Animal" as "an unknown type that is a subtype of Animal, possibly

Animal itself", which boils down to "some kind of animal". This is an example of a

bounded wildcard, where Animal forms the upper bound of the expected type. If you're

asked for a cage that simply holds some kind of animal, you're free to provide a lion

cage or a butterfly cage.

Note: It's also possible to specify a lower bound by using the super keyword instead of

extends. The code <? super Animal>, therefore, would be read as "an unknown type

that is a supertype of Animal, possibly Animal itself". You can also specify an unknown

type with an unbounded wilcard, which simply looks like <?>. An unbounded wildcard

is essentially the same as saying <? extends Object>.

While Cage<Lion> and Cage<Butterfly> are not subtypes of Cage<Animal>, they are

in fact subtypes of Cage<? extends Animal>:

 someCage = lionCage; // OK

 someCage = butterflyCage; // OK

So now the question becomes, "Can you add butterflies and lions directly to

someCage?". As you can probably guess, the answer to this question is "no".

 someCage.add(king); // compiler-time error

 someCage.add(monarch); // compiler-time error

If someCage is a butterfly cage, it would hold butterflies just fine, but the lions would be

able to break free. If it's a lion cage, then all would be well with the lions, but the

butterflies would fly away. So if you can't put anything at all into someCage, is it

useless? No, because you can still read its contents:

 void feedAnimals(Cage<? extends Animal> someCage) {

 for (Animal a : someCage)

 a.feedMe();

 }

Therefore, you could house your animals in their individual cages, as shown earlier, and

invoke this method first for the lions and then for the butterflies:

 feedAnimals(lionCage);

 feedAnimals(butterflyCage);

 - 196 -

Or, you could choose to combine your animals in the all-animal cage instead:

 feedAnimals(animalCage);

 - 197 -

Type Erasure

When a generic type is instantiated, the compiler translates those types by a technique

called type erasure — a process where the compiler removes all information related to

type parameters and type arguments within a class or method. Type erasure enables Java

applications that use generics to maintain binary compatibility with Java libraries and

applications that were created before generics.

For instance, Box<String> is translated to type Box, which is called the raw type — a

raw type is a generic class or interface name without any type arguments. This means

that you can't find out what type of Object a generic class is using at runtime. The

following operations are not possible:

public class MyClass<E> {

 public static void myMethod(Object item) {

 if (item instanceof E) { //Compiler error

 ...

 }

 E item2 = new E(); //Compiler error

 E[] iArray = new E[10]; //Compiler error

 E obj = (E)new Object(); //Unchecked cast warning

 }

}

The operations shown in bold are meaningless at runtime because the compiler removes

all information about the actual type argument (represented by the type parameter E) at

compile time.

Type erasure exists so that new code may continue to interface with legacy code. Using

a raw type for any other reason is considered bad programming practice and should be

avoided whenever possible.

When mixing legacy code with generic code, you may encounter warning messages

similar to the following:

Note: WarningDemo.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

This can happen when using an older API that operates on raw types, as shown in the

following WarningDemo program:

public class WarningDemo {

 public static void main(String[] args){

 Box<Integer> bi;

 bi = createBox();

 }

 static Box createBox(){

 return new Box();

 }

}

http://java.sun.com/docs/books/tutorial/java/generics/examples/WarningDemo.java

 - 198 -

Recompiling with -Xlint:unchecked reveals the following additional information:
WarningDemo.java:4: warning: [unchecked] unchecked conversion

found : Box

required: Box<java.lang.Integer>

 bi = createBox();

 ^

1 warning

 - 199 -

Summary of Generics

This chapter described the following problem: We have a Box class, written to be

generally useful so it deals with Objects. We need an instance that takes only

Integers. The comments say that only Integers go in, so the programmer knows this

(or should know it), but the compiler doesn't know it. This means that the compiler can't

catch someone erroneously adding a String. When we read the value and cast it to an

Integer we'll get an exception, but that's not ideal since the exception may be far

removed from the bug in both space and time:

1. Debugging may be difficult, as the point in the code where the exception is

thrown may be far removed from the point in the code where the error is located.

2. It's always better to catch bugs when compiling than when running.

Specifically, you learned that generic type declarations can include one or more type

parameters; you supply one type argument for each type parameter when you use the

generic type. You also learned that type parameters can be used to define generic

methods and constructors. Bounded type parameters limit the kinds of types that can be

passed into a type parameter; they can specify an upper bound only. Wildcards represent

unknown types, and they can specify an upper or lower bound. During compilation,

type erasure removes all generic information from a generic class or interface, leaving

behind only its raw type. It is possible for generic code and legacy code to interact, but

in many cases the compiler will emit a warning telling you to recompile with special

flags for more details.

For additional information on this topic, see Generics by Gilad Bracha.

http://java.sun.com/docs/books/tutorial/extra/generics/index.html

 - 200 -

Questions and Exercises: Generics

Questions

1. Consider the following classes:

public class AnimalHouse<E> {

 private E animal;

 public void setAnimal(E x) {

 animal = x;

 }

 public E getAnimal() {

 return animal;

 }

}

public class Animal{

}

public class Cat extends Animal {

}

public class Dog extends Animal {

}

For the following code snippets, identify whether the code:

 fails to compile,

 compiles with a warning,

 generates an error at runtime, or

 none of the above (compiles and runs without problem.)

a. AnimalHouse<Animal> house = new AnimalHouse<Cat>();

b. AnimalHouse<Dog> house = new AnimalHouse<Animal>();

c. AnimalHouse<?> house = new AnimalHouse<Cat>();

 house.setAnimal(new Cat());

d. AnimalHouse house = new AnimalHouse();

 house.setAnimal(new Dog());

Exercises

1. Design a class that acts as a library for the following kinds of media: book,

video, and newspaper. Provide one version of the class that uses generics and

one that does not. Feel free to use any additional APIs for storing and retrieving

the media.

 - 201 -

Lesson: Packages

This lesson explains how to bundle classes and interfaces into packages, how to use

classes that are in packages, and how to arrange your file system so that the compiler

can find your source files.

 - 202 -

Creating and Using Packages

To make types easier to find and use, to avoid naming conflicts, and to control access,

programmers bundle groups of related types into packages.

Definition: A package is a grouping of related types providing access protection and

name space management. Note that types refers to classes, interfaces, enumerations, and

annotation types. Enumerations and annotation types are special kinds of classes and

interfaces, respectively, so types are often referred to in this lesson simply as classes

and interfaces.

The types that are part of the Java platform are members of various packages that

bundle classes by function: fundamental classes are in java.lang, classes for reading

and writing (input and output) are in java.io, and so on. You can put your types in

packages too.

Suppose you write a group of classes that represent graphic objects, such as circles,

rectangles, lines, and points. You also write an interface, Draggable, that classes

implement if they can be dragged with the mouse.

//in the Draggable.java file

public interface Draggable {

 . . .

}

//in the Graphic.java file

public abstract class Graphic {

 . . .

}

//in the Circle.java file

public class Circle extends Graphic implements Draggable {

 . . .

}

//in the Rectangle.java file

public class Rectangle extends Graphic implements Draggable {

 . . .

}

//in the Point.java file

public class Point extends Graphic implements Draggable {

 . . .

}

//in the Line.java file

public class Line extends Graphic implements Draggable {

 . . .

}

You should bundle these classes and the interface in a package for several reasons,

including the following:

 - 203 -

 You and other programmers can easily determine that these types are related.

 You and other programmers know where to find types that can provide graphics-

related functions.

 The names of your types won't conflict with the type names in other packages

because the package creates a new namespace.

 You can allow types within the package to have unrestricted access to one

another yet still restrict access for types outside the package.

 - 204 -

Creating a Package

To create a package, you choose a name for the package (naming conventions are

discussed in the next section) and put a package statement with that name at the top of

every source file that contains the types (classes, interfaces, enumerations, and

annotation types) that you want to include in the package.

The package statement (for example, package graphics;) must be the first line in the

source file. There can be only one package statement in each source file, and it applies

to all types in the file.

Note: If you put multiple types in a single source file, only one can be public, and it

must have the same name as the source file. For example, you can define public

class Circle in the file Circle.java, define public interface Draggable in the

file Draggable.java, define public enum Day in the file Day.java, and so forth.

You can include non-public types in the same file as a public type (this is strongly

discouraged, unless the non-public types are small and closely related to the public

type), but only the public type will be accessible from outside of the package. All the

top-level, non-public types will be package private.

If you put the graphics interface and classes listed in the preceding section in a package

called graphics, you would need six source files, like this:

//in the Draggable.java file

package graphics;

public interface Draggable {

 . . .

}

//in the Graphic.java file

package graphics;

public abstract class Graphic {

 . . .

}

//in the Circle.java file

package graphics;

public class Circle extends Graphic implements Draggable {

 . . .

}

//in the Rectangle.java file

package graphics;

public class Rectangle extends Graphic implements Draggable {

 . . .

}

//in the Point.java file

package graphics;

public class Point extends Graphic implements Draggable {

 . . .

 - 205 -

}

//in the Line.java file

package graphics;

public class Line extends Graphic implements Draggable {

 . . .

}

If you do not use a package statement, your type ends up in an unnamed package.

Generally speaking, an unnamed package is only for small or temporary applications or

when you are just beginning the development process. Otherwise, classes and interfaces

belong in named packages.

 - 206 -

Naming a Package

With programmers worldwide writing classes and interfaces using the Java

programming language, it is likely that many programmers will use the same name for

different types. In fact, the previous example does just that: It defines a Rectangle class

when there is already a Rectangle class in the java.awt package. Still, the compiler

allows both classes to have the same name if they are in different packages. The fully

qualified name of each Rectangle class includes the package name. That is, the fully

qualified name of the Rectangle class in the graphics package is

graphics.Rectangle, and the fully qualified name of the Rectangle class in the

java.awt package is java.awt.Rectangle.

This works well unless two independent programmers use the same name for their

packages. What prevents this problem? Convention.

Naming Conventions

Package names are written in all lowercase to avoid conflict with the names of classes

or interfaces.

Companies use their reversed Internet domain name to begin their package names—for

example, com.example.orion for a package named orion created by a programmer at

example.com.

Name collisions that occur within a single company need to be handled by convention

within that company, perhaps by including the region or the project name after the

company name (for example, com.company.region.package).

Packages in the Java language itself begin with java. or javax.

In some cases, the internet domain name may not be a valid package name. This can

occur if the domain name contains a hyphen or other special character, if the package

name begins with a digit or other character that is illegal to use as the beginning of a

Java name, or if the package name contains a reserved Java keyword, such as "int". In

this event, the suggested convention is to add an underscore. For example:

Legalizing Package Names

Domain Name Package Name Prefix

clipart-open.org org.clipart_open

free.fonts.int int_.fonts.free

poetry.7days.com com._7days.poetry

 - 207 -

Using Package Members

The types that comprise a package are known as the package members.

To use a public package member from outside its package, you must do one of the

following:

 Refer to the member by its fully qualified name

 Import the package member

 Import the member's entire package

Each is appropriate for different situations, as explained in the sections that follow.

Referring to a Package Member by Its Qualified Name

So far, most of the examples in this tutorial have referred to types by their simple

names, such as Rectangle and StackOfInts. You can use a package member's simple

name if the code you are writing is in the same package as that member or if that

member has been imported.

However, if you are trying to use a member from a different package and that package

has not been imported, you must use the member's fully qualified name, which includes

the package name. Here is the fully qualified name for the Rectangle class declared in

the graphics package in the previous example.

graphics.Rectangle

You could use this qualified name to create an instance of graphics.Rectangle:

graphics.Rectangle myRect = new graphics.Rectangle();

Qualified names are all right for infrequent use. When a name is used repetitively,

however, typing the name repeatedly becomes tedious and the code becomes difficult to

read. As an alternative, you can import the member or its package and then use its

simple name.

Importing a Package Member

To import a specific member into the current file, put an import statement at the

beginning of the file before any type definitions but after the package statement, if there

is one. Here's how you would import the Rectangle class from the graphics package

created in the previous section.

import graphics.Rectangle;

Now you can refer to the Rectangle class by its simple name.

Rectangle myRectangle = new Rectangle();

 - 208 -

This approach works well if you use just a few members from the graphics package.

But if you use many types from a package, you should import the entire package.

Importing an Entire Package

To import all the types contained in a particular package, use the import statement with

the asterisk (*) wildcard character.

import graphics.*;

Now you can refer to any class or interface in the graphics package by its simple

name.

Circle myCircle = new Circle();

Rectangle myRectangle = new Rectangle();

The asterisk in the import statement can be used only to specify all the classes within a

package, as shown here. It cannot be used to match a subset of the classes in a package.

For example, the following does not match all the classes in the graphics package that

begin with A.

import graphics.A*; //does not work

Instead, it generates a compiler error. With the import statement, you generally import

only a single package member or an entire package.

Note: Another, less common form of import allows you to import the public nested

classes of an enclosing class. For example, if the graphics.Rectangle class contained

useful nested classes, such as Rectangle.DoubleWide and Rectangle.Square, you

could import Rectangle and its nested classes by using the following two statements.
import graphics.Rectangle;

import graphics.Rectangle.*;

Be aware that the second import statement will not import Rectangle.

Another less common form of import, the static import statement, will be discussed at

the end of this section.

For convenience, the Java compiler automatically imports three entire packages for each

source file: (1) the package with no name, (2) the java.lang package, and (3) the

current package (the package for the current file).

Apparent Hierarchies of Packages

At first, packages appear to be hierarchical, but they are not. For example, the Java API

includes a java.awt package, a java.awt.color package, a java.awt.font package,

and many others that begin with java.awt. However, the java.awt.color package,

the java.awt.font package, and other java.awt.xxxx packages are not included in

the java.awt package. The prefix java.awt (the Java Abstract Window Toolkit) is

 - 209 -

used for a number of related packages to make the relationship evident, but not to show

inclusion.

Importing java.awt.* imports all of the types in the java.awt package, but it does not

import java.awt.color, java.awt.font, or any other java.awt.xxxx packages. If

you plan to use the classes and other types in java.awt.color as well as those in

java.awt, you must import both packages with all their files:

import java.awt.*;

import java.awt.color.*;

Name Ambiguities

If a member in one package shares its name with a member in another package and both

packages are imported, you must refer to each member by its qualified name. For

example, the graphics package defined a class named Rectangle. The java.awt

package also contains a Rectangle class. If both graphics and java.awt have been

imported, the following is ambiguous.

Rectangle rect;

In such a situation, you have to use the member's fully qualified name to indicate

exactly which Rectangle class you want. For example,
graphics.Rectangle rect;

The Static Import Statement

There are situations where you need frequent access to static final fields (constants) and

static methods from one or two classes. Prefixing the name of these classes over and

over can result in cluttered code. The static import statement gives you a way to import

the constants and static methods that you want to use so that you do not need to prefix

the name of their class.

The java.lang.Math class defines the PI constant and many static methods, including

methods for calculating sines, cosines, tangents, square roots, maxima, minima,

exponents, and many more. For example,

public static final double PI 3.141592653589793

public static double cos(double a)

Ordinarily, to use these objects from another class, you prefix the class name, as

follows.

double r = Math.cos(Math.PI * theta);

You can use the static import statement to import the static members of java.lang.Math

so that you don't need to prefix the class name, Math. The static members of Math can

be imported either individually:

import static java.lang.Math.PI;

or as a group:

 - 210 -

import static java.lang.Math.*;

Once they have been imported, the static members can be used without qualification.

For example, the previous code snippet would become:

double r = cos(PI * theta);

Obviously, you can write your own classes that contain constants and static methods

that you use frequently, and then use the static import statement. For example,
import static mypackage.MyConstants.*;

Note: Use static import very sparingly. Overusing static import can result in code that is

difficult to read and maintain, because readers of the code won't know which class

defines a particular static object. Used properly, static import makes code more readable

by removing class name repetition.

 - 211 -

Managing Source and Class Files

Many implementations of the Java platform rely on hierarchical file systems to manage

source and class files, although The Java Language Specification does not require this.

The strategy is as follows.

Put the source code for a class, interface, enumeration, or annotation type in a text file

whose name is the simple name of the type and whose extension is .java. For example:

// in the Rectangle.java file

package graphics;

public class Rectangle() {

 . . .

}

Then, put the source file in a directory whose name reflects the name of the package to

which the type belongs:

.....\graphics\Rectangle.java

The qualified name of the package member and the path name to the file are parallel,

assuming the Microsoft Windows file name separator backslash (for Unix, use the

forward slash).

class name graphics.Rectangle

pathname to file graphics\Rectangle.java

As you should recall, by convention a company uses its reversed Internet domain name

for its package names. The Example company, whose Internet domain name is

example.com, would precede all its package names with com.example. Each

component of the package name corresponds to a subdirectory. So, if the Example

company had a com.example.graphics package that contained a Rectangle.java

source file, it would be contained in a series of subdirectories like this:

....\com\example\graphics\Rectangle.java

When you compile a source file, the compiler creates a different output file for each

type defined in it. The base name of the output file is the name of the type, and its

extension is .class. For example, if the source file is like this

// in the Rectangle.java file

package com.example.graphics;

public class Rectangle{

 . . .

}

class Helper{

 . . .

}

then the compiled files will be located at:

 - 212 -

<path to the parent directory of the output

files>\com\example\graphics\Rectangle.class

<path to the parent directory of the output

files>\com\example\graphics\Helper.class

Like the .java source files, the compiled .class files should be in a series of

directories that reflect the package name. However, the path to the .class files does not

have to be the same as the path to the .java source files. You can arrange your source

and class directories separately, as:

<path_one>\sources\com\example\graphics\Rectangle.java

<path_two>\classes\com\example\graphics\Rectangle.class

By doing this, you can give the classes directory to other programmers without

revealing your sources. You also need to manage source and class files in this manner

so that the compiler and the Java Virtual Machine (JVM) can find all the types your

program uses.

The full path to the classes directory, <path_two>\classes, is called the class path,

and is set with the CLASSPATH system variable. Both the compiler and the JVM

construct the path to your .class files by adding the package name to the class path.

For example, if

<path_two>\classes

is your class path, and the package name is

com.example.graphics,

then the compiler and JVM look for .class files in

<path_two>\classes\com\example\graphics.

A class path may include several paths, separated by a semicolon (Windows) or colon

(Unix). By default, the compiler and the JVM search the current directory and the JAR

file containing the Java platform classes so that these directories are automatically in

your class path.

Setting the CLASSPATH System Variable

To display the current CLASSPATH variable, use these commands in Windows and Unix

(Bourne shell):

In Windows: C:\> set CLASSPATH

In Unix: % echo $CLASSPATH

To delete the current contents of the CLASSPATH variable, use these commands:

In Windows: C:\> set CLASSPATH=

In Unix: % unset CLASSPATH; export CLASSPATH

To set the CLASSPATH variable, use these commands (for example):

 - 213 -

In Windows: C:\> set CLASSPATH=C:\users\george\java\classes

In Unix: % CLASSPATH=/home/george/java/classes; export CLASSPATH

 - 214 -

Summary of Creating and Using Packages

To create a package for a type, put a package statement as the first statement in the

source file that contains the type (class, interface, enumeration, or annotation type).

To use a public type that's in a different package, you have three choices: (1) use the

fully qualified name of the type, (2) import the type, or (3) import the entire package of

which the type is a member.

The path names for a package's source and class files mirror the name of the package.

You might have to set your CLASSPATH so that the compiler and the JVM can find the

.class files for your types.

 - 215 -

Questions and Exercises: Creating and Using Packages

Questions

Assume you have written some classes. Belatedly, you decide they should be split into

three packages, as listed in the following table. Furthermore, assume the classes are

currently in the default package (they have no package statements).

Destination Packages

Package Name Class Name

mygame.server Server

mygame.shared Utilities

mygame.client Client

1. Which line of code will you need to add to each source file to put each class in

the right package?

2. To adhere to the directory structure, you will need to create some subdirectories

in the development directory and put source files in the correct subdirectories.

What subdirectories must you create? Which subdirectory does each source file

go in?

3. Do you think you'll need to make any other changes to the source files to make

them compile correctly? If so, what?

Exercises

Download the source files as listed here.

 Client

 Server

 Utilities

1.- Implement the changes you proposed in questions 1 through 3 using the source files

you just downloaded.

2.- Compile the revised source files. (Hint: If you're invoking the compiler from the

command line (as opposed to using a builder), invoke the compiler from the directory

that contains the mygame directory you just created.)

http://java.sun.com/docs/books/tutorial/java/package/QandE/question/Client.java
http://java.sun.com/docs/books/tutorial/java/package/QandE/question/Server.java
http://java.sun.com/docs/books/tutorial/java/package/QandE/question/Utilities.java

